DIMES A Wiley Brand - Getting Started with Linux - Linux Desktops - Networking - The Internet - Administration - Security - Scripting - Linux Certification ## **Emmett Dulaney** Author and instructor at Anderson University ### Get More and Do More at Dummies.com® Start with **FREE** Cheat Sheets Cheat Sheets include - Checklists - Charts - Common Instructions - And Other Good Stuff! To access the Cheat Sheet created specifically for this book, go to www.dummies.com/cheatsheet/linuxaio ### **Get Smart at Dummies.com** Dummies.com makes your life easier with 1,000s of answers on everything from removing wallpaper to using the latest version of Windows. Check out our - Videos - Illustrated Articles - Step-by-Step Instructions Plus, each month you can win valuable prizes by entering our Dummies.com sweepstakes. * Want a weekly dose of Dummies? Sign up for Newsletters on - Digital Photography - Microsoft Windows & Office - Personal Finance & Investing - Health & Wellness - Computing, iPods & Cell Phones - eBay - Internet - Food, Home & Garden Find out "HOW" at Dummies.com ## by Emmett Dulaney #### Linux® All-in-One For Dummies® 5th Edition Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions. **Trademarks:** Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. Linux is a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL. ACCOUNTING, OR OTHER PROFESSIONAL SERVICES, IF PROFESSIONAL ASSISTANCE IS REOUIRED. THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit www.wiley.com/techsupport. Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com. Library of Congress Control Number: 2013958402 ISBN 978-1-118-84435-9 (pbk); ISBN 978-1-118-84431-1 (ebk); ISBN 978-1-118-84432-8 (ebk) Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 # **Contents at a Glance** | Introduction | | |--|-----| | Book I: Getting Started with Linux | 7 | | Chapter 1: Introducing Linux | | | Chapter 2: Installing Linux | 29 | | Chapter 3: Troubleshooting and Configuring Linux | 37 | | Chapter 4: Trying Out Linux | 57 | | Book II: Linux Desktops | 67 | | Chapter 1: GNOME, Unity, Cinnamon, and MATE | 69 | | Chapter 2: The KDE Desktop | | | Chapter 3: Commanding the Shell | 89 | | Chapter 4: Navigating the Linux File System | 109 | | Chapter 5: Introducing Linux Applications | 127 | | Chapter 6: Using Text Editors | 139 | | Book III: Networking | 151 | | Chapter 1: Connecting to the Internet | 153 | | Chapter 2: Setting Up a Local Area Network | 167 | | Chapter 3: Going Wireless | 179 | | Chapter 4: Managing the Network | 189 | | Book IV: The Internet | 203 | | Chapter 1: Browsing the Web | 205 | | Chapter 2: Reading Newsgroups and RSS Feeds | 217 | | Chapter 3: Using FTP | 231 | | Chapter 4: Hosting Internet Services | 241 | | Chapter 5: Managing Mail and News Servers | 257 | | Chapter 6: Managing DNS | 279 | | Book V: Administration | 299 | | Chapter 1: Introducing Basic System Administration | 301 | | Chapter 2: Managing Users and Groups | 337 | | Chapter 3: Managing File Systems | 351 | | Chapter 4: Working with Samba and NFS | 373 | | Book VI: Security | 381 | |---|-----| | Chapter 1: Introducing Linux Security | | | Chapter 2: Securing Linux | 399 | | Chapter 3: Computer Security Audits and Vulnerability Testing Types | 429 | | Book VII: Scripting | 443 | | Chapter 1: Introductory Shell Scripting | 445 | | Chapter 2: Advanced Shell Scripting | | | Chapter 3: Programming in Linux | | | Book VIII: Linux Certification | 489 | | Chapter 1: Studying for the Linux Essentials Certification Exam | 491 | | Chapter 2: Studying for the CompTIA Linux+ Powered by | | | LPI Certification Exams | 501 | | Chapter 3: Other Linux Certifications | 517 | | Index | 519 | # **Table of Contents** | Introduction | 1 | |------------------------------------|----| | About This Book | 2 | | Foolish Assumptions | | | Icons Used in This Book | | | Beyond the Book | | | Where to Go from Here | | | Book 1: Getting Started with Linux | 7 | | Chapter 1: Introducing Linux | | | What Is Linux? | | | Linux distributions | | | Making sense of version numbers | | | Linux Standard Base (LSB) | | | Contents of a Linux Distribution | | | GNU software | | | GUIs and applications | | | Networks | | | Internet servers | 21 | | Software development | | | Online documentation | | | Managing Your PC with Linux | | | Distribution media | | | Peripheral devices | | | File systems and sharing | | | Network | | | Getting Started | | | Step 1: Install | 27 | | Step 2: Configure | | | Step 4: Find out more | | | Chapter 2: Installing Linux | 29 | | Following the Installation Steps | | | Checking Your PC's Hardware | | | Setting Aside Space for Linux | | | Trying a Live CD | | | instailing Linux on a Flash Drive | | |---|----------| | Creating the bootable flash drive | | | Troubleshooting the workstation | | | Working daily with the new drive | 36 | | Chapter 3: Troubleshooting and Configuring Line | ıx | | Using Text Mode Installation | | | Troubleshooting X | 38 | | Resolving Other Installation Problems | | | Using Knoppix boot commands | | | The fatal signal 11 error | | | Getting around the PC reboot problem | 44 | | Using Linux kernel boot options | 44 | | Setting Up Printers | | | Managing DVDs, CD-ROMs, and Flash Drives | | | Installing Other Software | | | Installing software in Debian and Ubuntu . | | | Installing software in Fedora | | | Installing software in SUSE | | | Installing software in Xandros | 55 | | Chapter 4: Trying Out Linux | | | Starting Linux | 57 | | Playing with the Shell | | | Starting the bash shell | | | Understanding shell commands | | | Trying a few Linux commands | | | Shutting Down | 64 | | Book II: Linux Desktops | 67 | | Chapter 1: GNOME, Unity, Cinnamon, and MATE | | | Getting to Know the GNOME Desktop | | | Understanding the GNOME Panels | 70
71 | | The top panel | | | The desktop | | | The bottom panel | | | Looking at Unity | | | Looking at Cinnamon | | | Looking at MATE | | | Chapter 2: The KDE Desktop | 79 | | Getting to Know the KDE Desktop | | | Desktop context menus | | | Icon context menus | | | Understanding the KDE Panel | | |--|-----| | The Main Menu button | | | Panel icons | | | Configuring the KDE Bottom Panel | | | Configuring the KDE Desktop | 86 | | Chapter 3: Commanding the Shell | | | Opening Terminal Windows and Virtual Consoles | 89 | | Using the bash Shell | 90 | | Understanding the syntax of shell commands | | | Combining shell commands | | | Controlling command input and output | | | Typing less with automatic command completion | | | Going wild with asterisks and question marks | | | Repeating previously typed commands | | | Discovering and Using Linux Commands | | | Becoming root (superuser) | | | Managing processes | | | Working with date and time | | | Processing files | | | Writing Shell Scripts | 106 | | Chapter 4: Navigating the Linux File System | 109 | | Understanding the Linux File System | 109 | | Navigating the File System with Linux Commands | | | Commands for directory navigation | 114 | | Commands for directory listings and
permissions | 116 | | Commands for changing permissions and ownerships | 118 | | Commands for working with files | | | Commands for working with directories | 120 | | Commands for finding files | | | Commands for mounting and unmounting | | | Commands for checking disk-space usage | 123 | | Chapter 5: Introducing Linux Applications | 127 | | Taking Stock of Linux Applications | 127 | | Introducing Office Applications and Tools | | | LibreOffice.org office suite | | | Calendars | 132 | | Calculators | | | Checking out Multimedia Applications | 133 | | Using a digital camera | | | Playing audio CDs | 134 | | Playing sound files | 135 | | Burning a CD or DVD | | | Using Graphics and Imaging Apps | | | The GIMP | 136 | | GNOME Ghostview | 138 | | Chapter 6: Using Text Editors | 139 | |---|-----| | Using GUI Text Editors | | | Text Editing with ed and vi | | | Using ed | | | Using vi | | | Book III: Networking | 151 | | Chapter 1: Connecting to the Internet | 153 | | Understanding the Internet | 153 | | Deciding How to Connect to the Internet | | | Connecting with DSL | | | How DSL works | 156 | | DSL alphabet soup: ADSL, IDSL, SDSL | 157 | | Typical DSL setup | 158 | | Connecting with a Cable Modem | | | How a cable modem works | | | Typical cable modem setup | 163 | | Chapter 2: Setting Up a Local Area Network | 167 | | Understanding TCP/IP | 167 | | IP addresses | | | Internet services and port numbers | | | Setting Up an Ethernet LAN | | | How Ethernet works | | | Ethernet cables | 173 | | Configuring TCP/IP Networking | 175 | | Connecting Your LAN to the Internet | 177 | | Chapter 3: Going Wireless | 179 | | Understanding Wireless Ethernet Networks | 179 | | Understanding infrastructure and ad hoc modes | 180 | | Understanding Wired Equivalent Privacy (WEP) | | | Setting Up Wireless Hardware | | | Configuring the Wireless Access Point | | | Configuring Wireless Networking | 185 | | Chapter 4: Managing the Network | 189 | | Discovering the TCP/IP Configuration Files | | | /etc/hosts | | | /etc/networks | | | /etc/host.conf | | | /etc/resolv.conf | | | /etc/hosts.allow | 192 | | /etc/hosts.deny | 192 | |--|-----| | /etc/nsswitch.conf | | | Checking Out TCP/IP Networks | | | Checking the network interfaces | | | Checking the IP routing table | | | Checking connectivity to a host | | | Checking network status | | | Sniffing network packets | | | Using GUI tools | | | Configuring Networks at Boot Time | | | Book IV: The Internet | 203 | | Chapter 1: Browsing the Web | 205 | | Discovering the Web | | | Like a giant spider's web | | | Links and URLs | | | Web servers and web browsers | | | Web Browsing in Linux | | | Checking out web browsers for Linux | | | Introducing Firefox's user interface | | | Changing your home page | | | Surfing the Internet with Firefox | | | Chapter 2: Reading Newsgroups and RSS Feeds | | | Understanding Newsgroups | 218 | | Newsgroup hierarchy | 218 | | Top-level newsgroup categories | 219 | | Linux-related newsgroups | | | Reading Newsgroups from Your ISP | | | Taking stock of newsreaders | | | Reading newsgroups with Thunderbird | | | Newsgroup subscriptions | | | Posting news | | | Using KNode | 226 | | Reading and Searching Newsgroups at Websites | | | Reading RSS Feeds | | | Examining an RSS FeedReading RSS Feeds | 229 | | Chapter 3: Using FTP | | | Using Graphical FTP Clients | | | Using gFTP | | | Introducing FileZilla | | | Using a web browser as an FTP client | | | Using the Command Line FTP Client | 234 | | Chapter 4: Hosting Internet Services | 241 | |--|---------------| | Understanding Internet Services | 241 | | TCP/IP and sockets | | | Internet services and port numbers | | | Using the Internet Super Server | | | Using inetd | | | Using xinetd | | | Running Standalone Servers | | | Starting and stopping servers manually | | | Starting servers automatically at boot time | | | Chapter 5: Managing Mail and News Servers | 257 | | Installing the Mail Server | 257 | | Using sendmail | | | A mail-delivery test | | | The mail-delivery mechanism | | | The sendmail configuration file | | | Syntax of the sendmail.cf file | | | Other sendmail files | | | The .forward file | 267 | | The sendmail alias file | 268 | | Installing the INN Server | | | Configuring and Starting the INN Server | 269 | | InterNetNews components | 270 | | The incoming.conf file | | | The readers.conf file | 274 | | InterNetNews startup | 274 | | Setting Up Local Newsgroups | | | Defining a newsgroup hierarchy | | | Updating configuration files | | | Adding the newsgroups | | | Testing your newsgroups | 277 | | Chapter 6: Managing DNS | . 27 9 | | Understanding Domain Name System (DNS) | 279 | | What is DNS? | 279 | | Discovering hierarchical domain names | | | Exploring Berkeley Internet Name Domain (BIND) | | | Configuring DNS | | | Configuring the resolver | | | Configuring a caching name server | | | Configuring a primary name server | | | Book V: Administration | 299 | |--|-----| | Chapter 1: Introducing Basic System Administration | 301 | | Taking Stock of System Administration Tasks | 301 | | Introducing Some GUI Sysadmin Tools | | | How to Become root | | | Using the su - command | 306 | | Becoming root for the GUI utilities | | | Recovering from a forgotten root password | 307 | | Understanding How Linux Boots | 308 | | Understanding the init process | 308 | | Examining the /etc/inittab file | 310 | | Trying a new run level with the init command | | | Understanding the Linux startup scripts | 312 | | Manually starting and stopping servers | 313 | | Automatically starting servers at system startup | | | Taking Stock of Linux System Configuration Files | 314 | | Monitoring System Performance | 317 | | Using the top utility | 318 | | Using the uptime command | 319 | | Using the vmstat utility | 320 | | Checking disk performance and disk usage | 321 | | Viewing System Information | | | with the /proc File System | | | Understanding Linux Devices | | | Device files | | | Persistent device naming with udev | | | Managing Loadable Driver Modules | | | Loading and unloading modules | | | Using the /etc/modprobe.conf file | | | Scheduling Jobs in Linux | | | Scheduling one-time jobs | | | Scheduling recurring jobs | 333 | | Chapter 2: Managing Users and Groups | 337 | | Adding User Accounts | 337 | | Managing user accounts by using a GUI user manager | | | Managing user accounts by using commands | 342 | | Understanding the /etc/passwd File | | | Managing Groups | | | Other User and Group Administration Values | | | Exploring the User Environment | | | Changing User and Group Ownership of Files | | | Chapter 3: Managing File Systems | | |--|-----| | Exploring the Linux File System | 351 | | Understanding the file-system hierarchy | | | Mounting a device on the file system | 355 | | Examining the /etc/fstab file | | | Sharing Files with NFS | | | Exporting a file system with NFS | | | Mounting an NFS file system | | | Backing Up and Restoring Files | | | Selecting a backup strategy and media | | | Commercial backup utilities for Linux | | | Using the tape archiver — tar | | | Accessing a DOS or Windows File System | | | Mounting a DOS or Windows disk partition | | | Mounting those ancient DOS floppy disks | | | Mounting an NTFS partition | 370 | | Chapter 4: Working with Samba and NFS | | | Sharing Files with NFS | 373 | | Exporting a file system with NFS | | | Mounting an NFS file system | 376 | | Setting Up a Windows Server Using Samba | | | Installing Samba | | | Configuring Samba | | | Trying out Samba | 380 | | N (111. S | 201 | | Book VI: Security | 301 | | Chapter 1: Introducing Linux Security | | | Why Worry about Security? | 383 | | Establishing a Security Framework | | | Determining business requirements for security | | | Performing risk analysis | | | Establishing a security policy | | | Implementing security solutions (mitigation) | | | Managing security | | | Securing Linux | | | Understanding the host-security issues | | | Understanding network-security issues | | | Delving into Computer Security Terminology and Tools | 391 | | Keeping Up with Security News and Updates | 397 | | Chapter 2: Securing Linux | 399 | | Securing Passwords | | | Shadow passwords | | | Pluggable authentication modules (PAMs) | 401 | | ••· · · · · · · · · · · · · · · · · · · | 402 | |---|-------------------| | Viewing ownerships and permissions | 402 | | Changing file ownerships | | | Changing file permissions | | | Setting default permission | | | Checking for set user ID permission | | | Encrypting and Signing Files with GnuPG | | | Understanding public key encryption | | | Understanding digital signatures | | | Using GPG | | | Monitoring System Security | | | Securing Internet Services | | | Turning off standalone services | | | Configuring the Internet super server
Configuring TCP wrapper security | | | Using Secure Shell (SSH) for Remote Logins | 414 | | Setting Up Simple Firewalls | | | Using NAT | | | Enabling packet filtering on your Linux system | | | Security Files to Be Aware Of | | | Chapter 3: Computer Security Audits and Vulnerability Testing Types | 429 | | Understanding Security Audits | | | | | | | | | Nontechnical aspects of security audits | 430 | | Nontechnical aspects of security audits Technical aspects of security audits | 430
431 | | Nontechnical aspects of security audits
Technical aspects of security audits
Implementing a Security Test Methodology | 430
431
431 | | Nontechnical aspects of security audits Technical aspects of security audits Implementing a Security Test Methodology Some
common computer vulnerabilities | | | Nontechnical aspects of security audits | | | Nontechnical aspects of security audits Technical aspects of security audits Implementing a Security Test Methodology Some common computer vulnerabilities | | | Nontechnical aspects of security audits Chapter 2: Advanced Shell Scripting | 457 | |--|---| | Trying Out sed | 457 | | Working with awk and sed | | | Step 1: Pull out the ISBN | | | Step 2: Calculate the 13th digit | | | Step 3: Add the 13th digit to the other 12 | | | Step 4: Finish the process | | | Final Notes on Shell Scripting | 463 | | Chapter 3: Programming in Linux | 465 | | An Overview of Programming | 465 | | Exploring the Software-Development Tools in Linux | 467 | | GNU C and C++ compilers | | | The GNU make utility | | | The GNU debugger | 478 | | Understanding the Implications of GNU Licenses | | | The GNU General Public License | | | The GNU Library General Public License | 486 | | · | | | Chapter 1: Studying for the Linux Essentials Certification Exa | m491 | | hapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials | m491
491 | | hapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source | m491
491
492 | | Overview of Linux Essentials Certification Exa The Linux Community and a Career in Open Source Using the Command Line to Get Help | m491 491492493 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line | m491 491492493495 | | Overview of Linux Essentials Certification Exa The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System | m491
491
492
493
495
496 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions | m491
491
492
493
495
496 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by | m491
491
492
493
495
496
498 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams | m491
491
492
493
495
498 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by | m491
491
492
493
496
498
501 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams | m491
491
492
493
496
498
501
501 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams System Architecture | m491
491
492
493
495
498
501
501
502
503 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams System Architecture Linux Installation and Package Management | m 491
 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams System Architecture Linux Installation and Package Management GNU and Unix Commands Devices, Linux File systems, Filesystem Hierarchy Standard Shells, Scripting, and Data Management | m 491
 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams System Architecture Linux Installation and Package Management GNU and Unix Commands Devices, Linux File systems, Filesystem Hierarchy Standard Shells, Scripting, and Data Management User Interfaces and Desktops | m 491
 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help | m | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams Overview of the CompTIA Linux+ Exams System Architecture Linux Installation and Package Management GNU and Unix Commands Devices, Linux File systems, Filesystem Hierarchy Standard Shells, Scripting, and Data Management User Interfaces and Desktops Administrative Tasks Essential System Services | m491 | | Chapter 1: Studying for the Linux Essentials Certification Exa Overview of Linux Essentials The Linux Community and a Career in Open Source. Using the Command Line to Get Help The Power of the Command Line The Linux Operating System Security and File Permissions. Chapter 2: Studying for the CompTIA Linux+ Powered by PI Certification Exams. Overview of the CompTIA Linux+ Exams System Architecture Linux Installation and Package Management GNU and Unix Commands Devices, Linux File systems, Filesystem Hierarchy Standard Shells, Scripting, and Data Management User Interfaces and Desktops Administrative Tasks | m491 | | Chapter 3: Other Linux Certifications | | |---------------------------------------|-----| | Vendor-Neutral Certifications | 517 | | Vendor-Specific Certifications | 518 | | Index | 519 | ## Introduction inux is truly amazing when you consider how it originated and how it continues to evolve. From its modest beginning as the hobby of one person — Linus Torvalds of Finland — Linux has grown into a full-fledged operating system with features that rival those of any commercial Unix operating system. To top it off, Linux — with all of its source code — is available free to anyone. All you have to do is download it from an Internet site or get it on CDs or a DVD for a nominal fee from one of many Linux CD vendors. Linux certainly is an exception to the rule that "you get what you pay for." Even though Linux is free, it's no slouch when it comes to performance, features, and reliability. The robustness of Linux has to do with the way it is developed and updated. Developers around the world collaborate to add features. Incremental versions are continually downloaded by users and tested in a variety of system configurations. Linux revisions go through much more rigorous beta testing than any commercial software does. Since the release of Linux kernel 1.0 on March 14, 1994, the number of Linux users around the world has grown exponentially. Many Linux distributions — combinations of the operating system with applications and installation tools — have been developed to simplify installation and use. Some Linux distributions are commercially sold and supported, while many continue to be freely available. Linux, unlike many freely available software programs, comes with extensive online information on topics such as installing and configuring the operating system for a wide variety of PCs and peripherals. A small group of hard-core Linux users are expert enough to productively use Linux with the
online documentation alone. A much larger number of users, however, move to Linux with some specific purpose in mind (such as setting up a web server or learning Linux). Also, a large number of Linux users use their systems at home. For these new users, the online documentation is not easy to use and typically does not cover the specific uses of Linux that each user may have in mind. If you're beginning to use Linux, what you need is a practical guide that not only gets you going with Linux installation and setup, but also shows you how to use Linux for a specific task. You may also want to try out different Linux distributions before settling on one. ### About This Book Linux All-in-One For Dummies gives you eight quick-reference guides in a single book. Taken together, these eight minibooks provide detailed information on installing, configuring, and using Linux, as well as pointers for passing the vendor-neutral certification exams available from the Linux Professional Institute (LPI) to authenticate your skills. What you'll like most about this book is that you don't have to sequentially read the whole thing chapter by chapter — or even read through each section in a chapter. You can pretty much turn to the topic you want and quickly get the answer to your pressing questions about Linux, whether they're about using the LibreOffice.org word processor, setting up the Apache web server, or a wide range of topics. Here are some of the things you can do with this book: - ◆ Install and configure Linux Debian, Fedora, openSUSE, Ubuntu, or Xandros — using the information given in this book. - ◆ Connect the Linux PC to the Internet through a DSL or cable modem. - ◆ Add a wireless Ethernet to your existing network. - ◆ Get tips, techniques, and shortcuts for specific uses of Linux, such as - Setting up and using Internet services - Setting up a Windows server using Samba - Using Linux commands - Using shell programming - Using the LibreOffice.org office suite and other applications that come with Linux - ◆ Understand the basics of system and network security. - ◆ Perform system administration tasks. I use a simple notational style in this book. All listings, filenames, function names, variable names, and keywords are typeset in a monospace font for ease of reading. I *italicize* the first occurrences of new terms and concepts and then provide a definition right there. I show typed commands in **boldface.** The output of commands and any listing of files are shown in a monospace font. The icons to the certification objectives are important after you've become comfortable enough with the operating system to consider taking the certification exams. They will draw your attention to the key concepts and topics tested upon in the LX0-101 and LX0-102 exams (both of which you must pass to become certified by the Linux Professional Institute). Each minibook zeros in on a specific task area — such as using the Internet or running Internet servers — and then provides hands-on instructions on how to perform a series of related tasks. You can jump right to a section and read about a specific task. You don't have to read anything but the few paragraphs or the list of steps that relate to your question. Use the Table of Contents or the Index to locate the pages relevant to your question. You can safely ignore text next to the Technical Stuff icons, as well as text in sidebars. However, if you're the kind of person who likes to know some of the hidden details of how Linux works, then by all means, dig into the Technical Stuff icons and the sidebars. If you are a novice to Linux, overlook the certification objective icons as you read. Only after you become comfortable with the operating system, and are considering authenticating your skills by taking the LPI exams, should you revisit the book and look for these icons. ### Foolish Assumptions I assume that you're familiar with a PC — you know how to turn it on and off and you've dabbled with Windows. (Considering that most new PCs come preloaded with Windows, this assumption is safe, right?) And I assume that you know how to use some Windows applications, such as Microsoft Office. When installing Linux on your PC, you may want to retain your Windows installations. I assume that you don't mind shrinking the Windows partition to make room for Linux. For this procedure, you can invest in a good disk-partitioning tool or use one of the partitioning tools included with most Linux distributions. I also assume that you're willing to accept the risk that when you try to install Linux, some things may not quite work. Problems can happen if you have some uncommon types of hardware. If you're afraid of ruining your system, try finding a slightly older, spare Pentium PC that you can sacrifice and then install Linux on that PC. ### **Sidebars** Sometimes I use sidebars to highlight interesting, but not critical, information. Sidebars explain concepts you may not have encountered before or give a little insight into a related topic. If you're in a hurry, you can safely skip the sidebars. *Linux All-in-One Desk Reference For Dummies* has eight minibooks, each of which focuses on a small set of related topics. If you're looking for information on a specific topic, check the minibook names on the spine or consult the Table of Contents. ### Icons Used in This Book Following the time-honored tradition of the *All-in-One For Dummies* series, I use icons to help you quickly pinpoint useful information. The icons include the following: The Distribution Specific icon points out information that applies to specific Linux distributions that this book covers: Debian, Fedora, Knoppix, SUSE, Ubuntu, and Xandros. The Remember icon marks a general, interesting fact — something that you want to know and remember as you work with Linux. You might even find interesting trivia worth bringing up at an evening dinner party. When you see the Tip icon, you're about to read about something you can do to make your job easier. Long after you've finished with the first reading of this book, you can skim the book, looking for only the tips. I use the Warning icon to highlight potential pitfalls. With this icon, I'm telling you: "Watch out! Whatever is being discussed could hurt your system." They say that those who are forewarned are forearmed, so I hope these entities will save you some frustration. The Technical Stuff icon marks technical information that could be of interest to an advanced user (or those aspiring to be advanced users). When you see this icon, the material or command being covered here is on the LPI LX0-101 exam. When you see this icon, the material or command being covered here is on the LPI LX0-102 exam. ### Beyond the Book This book does not stop with the physical copy you hold in your hands. In addition to the content that is here, you'll find a number of things worth looking at on the Dummies website. Among them are links to discussions of other distributions and related technologies. You can access them at www.dummies.com/extras/linuxaio Occasionally, we have updates to our technology books. If this book does have any technical updates, they'll be posted at www.dummies.com/go/extras/linuxaio. ### Where to Go from Here It's time to get started on your Linux adventure. Turn to any chapter and let the fun begin. Use the Table of Contents and the Index to figure out where you want to go. Before you know it, you'll become an expert at Linux! I hope you enjoy consulting this book as much as I enjoyed writing it! # **Book I** # **Getting Started with Linux** ## Contents at a Glance | Chapter 1: Introducing Linux | | |--|----| | What Is Linux? | Ç | | Contents of a Linux Distribution | 16 | | Managing Your PC with Linux | | | Getting Started | | | Chapter 2: Installing Linux | 29 | | Following the Installation Steps | | | Checking Your PC's Hardware | | | Setting Aside Space for Linux | | | Trying a Live CD | | | Installing Linux on a Flash Drive | | | Chapter 3: Troubleshooting and Configuring Linux | 37 | | Using Text Mode Installation | | | Troubleshooting X | | | Resolving Other Installation Problems | | | Setting Up Printers | | | Managing DVDs, CD-ROMs, and Flash Drives | | | Installing Other Software | | | Chapter 4: Trying Out Linux | 57 | | • | | | Starting Linux | | | Playing with the Shell | | | Shutting Down | 02 | ## Chapter 1: Introducing Linux ### In This Chapter - Explaining what Linux is - **✓** Going over what Linux distributions typically include - **✓** Discovering what Linux helps you manage - **✓** Getting started with Linux By virtue of your holding this book in your hands, it's a safe bet that you've heard something about Linux. If you're wondering just exactly what Linux is, whether it's worth serious consideration, and what it can help you do, this chapter is for you. Here I provide a broad picture of Linux and tell you how you can start using it right away. Although Linux can run on many hardware platforms, this book focuses on Linux for Intel 80x86 and Pentium processors (basically any PC that can run any flavor of Windows). ### What Is Linux? A PC can be thought of as a combination of *hardware* — things you can touch, such as the system box, monitor, keyboard, and mouse. The system box contains the most important hardware of all — the *central processing unit* (CPU), the microchip that runs the *software* (any program that tells the computer how to do your bidding), which you can't actually touch. In a typical Pentium-based PC, the Pentium microprocessor is the CPU. Other important hardware in the system box includes the memory (RAM chips) and the hard drive. The *operating system* is the program that has to interact with all the hardware and get it to play nice. The operating system software manages all that hardware and runs other software at your command. You, the user, provide those commands by choosing menus, clicking icons,
or typing cryptic text. Linux is an operating system — as are Unix, Mac OS, Windows 7 or 8, Windows Vista, and even older Windows versions. The Linux operating system is modeled after Unix; in its most basic, no-frills form, the Linux operating system also goes by *Linux kernel*. The operating system is what gives a computer — any computer — its personality. For example, you can run Windows on a PC — and on that same PC, you can also install and run Linux. Then, depending on which operating system is installed and running at any particular time, the same PC can operate as a Windows system or as a Linux system. ### Does Linux really run on any computer? Linux runs on many types of computer systems — and there are so many distributions that it does seem able to run on nearly any type of computer. Linus Torvalds and other programmers developed Linux for the Intel 80x86 (and compatible) line of processors. This book covers Linux for Intel 80x86 and Pentium processors. (These are known as the *IA32 architecture* processors, or *i386*, because they support the instruction set of the 80386 processor.) Nowadays Linux is also available for systems based on other processors — such as - AMD's 64-bit AMD64 processors - ✓ The Motorola 68000 family - Alpha AXPs - ✓ Sun SPARCs and UltraSPARCs - Hewlett-Packard's HP PA-RISC - ✓ The PowerPC and PowerPC64 processors - ✓ The MIPS R4x00 and R5x00 IBM has released its own version of Linux for its S/390 and zSeries mainframes. And a number of popular Linux distributions, including Ubuntu and Fedora, can even be run on Sony's Playstation 3 video game system. The primary job of an operating system is to load software (computer programs) from the hard drive (or other permanent storage) into the memory and get the CPU to run those programs. Everything you do with your computer is possible because of the operating system, so if the operating system somehow messes up, the entire system freezes. You may know how infuriating it can be when your favorite operating system — maybe even the one that came with your PC — suddenly calls it quits just as you were about to click the Send button after composing that long e-mail to your friend. You try a number of things frantically, but nothing happens. Then it's time for the Reset button (or pulling the cord from the back of the machine if your computer's builders weren't wise enough to include a Reset). Luckily, that sort of thing almost never happens with Linux — it has a reputation for being a very reliable operating system. In technical mumbo jumbo, Linux is a *multiuser*, *multitasking operating system*. Those terms just mean that Linux enables multiple users to log in, and each of those users can run more than one program at the same time. Nearly all operating systems are multiuser and multitasking these days, but when Linux first started in 1993, *multiuser* and *multitasking* were big selling points. ### Linux distributions A *Linux distribution* consists of the Linux *kernel* (the operating system) and a collection of applications, together with an easy-to-use installation program. Most people just say *Linux* to refer to a specific Linux distribution. You will find many Linux distributions, and each includes the standard Linux operating system and the following major packages: - **♦ The X Window System:** It's the graphical user interface. - One or more graphical desktops: Among the most popular are GNOME and KDE. - ◆ A selection of applications: Linux programs come in the form of readyto-run software, but the *source code* (the commands we humans use to tell the computer what to do) is included (or available), as is its documentation. Current Linux distributions include a huge selection of software — so much that some distributions usually require one or more DVD-ROMs. The development and maintenance of the Linux kernel, the software packages in a Linux distribution, and the Linux distributions themselves are organized as *open source* projects. In a nutshell, *open source* means access to the source code and the right to freely redistribute the software without any restrictions. There's a lot more to the definition than this succinct note. To find out the details of what open source means and the acceptable open source licenses, you can visit the Open Source Initiative website at www.opensource.org. Table 1-1 lists a few major Linux distributions along with a brief description of each. Note, however, that there are many more Linux distributions than the ones shown in Table 1-1. To find out more about Linux distributions, visit DistroWatch.com at http://distrowatch.com. At that website, you can read up on specific distributions as well as find links for downloading or ordering DVDs for specific distributions. | Table 1-1 | Major Linux Distributions | |---------------------|---| | Distribution | Description | | Debian
GNU/Linux | This noncommercial distribution started in 1993 and continues to be a popular distribution, with many volunteer developers around the world contributing to the project. Debian is a huge distribution that takes some time to install. After you have installed the base Debian system, you can install and upgrade Debian packages easily with a package installer called apt-get (where apt stands for the Advanced Packaging Tool.) Debian is available free of charge from www.debian.org. Debian is the basis for several other recent distributions including Knoppix, MEPIS, Ubuntu, and Xandros. | Book I Chapter 1 ntroducing Linu | Distribution | Description | |-----------------------|--| | Fedora | This distribution, once known as Fedora Core, is the successor to Red Hat Linux, which is the Linux distribution from Red Hat. Fedora Core 1, released in November 2003, was the successor to Red Hat Linux 9. The alpha release of Fedora 13 was in 2010. Fedora is freely available and uses the Red Hat Package Manager (RPM) format for its software packages. You can download Fedora Core from http://fedoraproject.org. The latest Fedora download can be found at http://fedoraproject.org/en/get-fedora. | | Gentoo
Linux | This is a noncommercial, source-based (all software is provided in source-code form) distribution that first appeared in 2002. The installer provides some binary packages to get the Linux going, but the idea is to compile all source packages on the user's computer. The requirement to install so much makes it time-consuming to build a full-fledged Gentoo system with the latest graphical desktops, multimedia, and development tools because all the packages have to be downloaded and compiled. Gentoo Linux is freely available from www.gentoo.org. | | Knoppix | This Live distribution is based on Debian and named after its developer, Klaus Knopper of Germany. Knoppix can be used as a recovery tool (to fix problems with an already installed Linux system) because you can run Knoppix directly from a CD without having to first install it on the hard drive. (Although other distributions have this capability, Knoppix is ideally suited for the task.) The Knoppix CD stores software in compressed format, and Knoppix decompresses the programs on-the-fly. With this approach, Knoppix can pack up to 2GB of software on a CD. Knoppix uses the Debian package management. For information on downloading Knoppix free of charge, visit the Knoppix website at www.knopper.net/knoppix/index-en.html. | | Linspire | This commercial distribution was first released in 2002 under the name LindowsOS. Linspire uses the Debian package format and offers software downloads for a fee through what it calls the Click-N-Run web-based interface. Though you can still find it and download it from some locations, Linspire was acquired by Xandros in 2008 and has since been discontinued as a Linux distribution. | | Mandriva
Linux One | This popular distribution began life as a 1998 release of Red Hat Linux with an easy-to-use installer and with KDE as the default desktop. Until recently, this distribution was called Mandrakelinux. Mandriva Linux One uses the Red Hat Package Manager (RPM) format for its software packages. You can download the latest version at www.mandriva.com. Click the Download link for more information. | | Distribution | Description | |-----------------------
--| | MEPIS Linux | This Debian-based Live distribution was first released in July 2003. It includes a graphical installer that can be launched from the Live distribution to install MEPIS on the hard drive. MEPIS has good hardware detection and comes with Java and multimedia software, which makes it popular. MEPIS uses the Debian package format. You can download from www.mepis.org. | | Slackware
Linux | This distribution is one of the oldest, having been first released in 1992. Slackware uses compressed tar files for its packages and provides a text-based installer with limited automatic detection of hardware. You do all software configurations by editing text files. Slackware is freely available from www.slackware.com. | | SUSE Linux | This commercial distribution switched to a community development project called openSUSE in August 2005. SUSE Linux Open Source Software (OSS) is now freely available, and the retail SUSE Linux is based on the open source version. SUSE comes with the YaST installation and configuration tool, which is one of the best administration tools available. SUSE Linux uses RPM packages. The openSUSE project provides the ISO image files from various mirror sites. Visit www.opensuse.org for more information. | | Ubuntu
Linux | This Debian-based, noncommercial Linux distribution has become very popular since its initial release in 2004. Ubuntu is available as both an install distribution and a Live distribution. Because it's Debian based, you can install the basic desktop system from the install media and then use the apt-get tool to install other packages as well as keep the system up to date. You can download Ubuntu free of charge from www.ubuntulinux.com/download. | | Xandros
Desktop OS | This distribution is the successor to Corel Linux and is based on Debian. Xandros is aimed at first-time Linux users, with an installer that can repartition the hard drive. The versatile Xandros File Manager is a key selling point of this distribution. However, Xandros includes some proprietary components that prevent redistribution. A trial version of both Xandros Desktop and Server can be downloaded for evaluation. In 2008, Xandros acquired Linspire, developer of the Linspire and Freespire Linux desktop operating systems. Visit www.xandros.com.ar for more information about Xandros. | Book I Chapter 1 Introducing Linu As you can see from the brief descriptions in Table 1-1, some Linux distributions, such as Knoppix and MEPIS, are in the form of Live CDs or DVDs. A *Live* version includes a Linux kernel that you can boot and run directly from the CD or DVD without having to first install it on your hard drive. Such Live distributions can be handy if you want to try out a distribution before you decide whether to install it. Many Linux distributions are commercial products that you can buy online or in computer stores and bookstores. If you have heard about open source and the *GNU* (which stands for GNU's Not Unix) license, you may think that no one can sell Linux for profit. Luckily for companies that sell Linux distributions, the GNU license — also called the GNU General Public License (GPL) — does allow commercial, for-profit distribution (but requires that the software be distributed in source-code form) and stipulates that anyone may copy and distribute the software in source-code form to anyone else. Several Linux distributions are available free of charge under the GPL, which means that you can download as many copies of the OS as you like. ### Making sense of version numbers The Linux kernel — and each Linux distribution — has its own version number. Additional software programs (such as GNOME and KDE) that come with the Linux distribution have their own version numbers as well. The version numbers for the Linux kernel and the Linux distributions are unrelated, but each has particular significance. ### Linux kernel version numbers After Linux kernel version 1.0 was released on March 14, 1994, the loosely knit Linux development community adopted a version-numbering scheme. Version numbers such as 1.x.y and 2.x.y, where x is an even number, are considered the stable versions. The last number, y, is the patch level, which is incremented as problems are fixed. For example, 2.6.14 is a typical, stable version of the Linux kernel. Notice that these version numbers are in the form of three integers separated by periods — major.minor.patch — where major and minor are numbers denoting the major and minor version numbers, and patch is another number representing the patch level. Version numbers of the form 2.x.y with an odd x number are beta releases for developers only; they may be unstable, so you shouldn't adopt such versions for day-to-day use. For example, if you were to find version 2.7.5 of the Linux kernel, the 7 in the minor version number tells you it's a beta release. Developers add new features to these odd-numbered versions of Linux. You can find out about the latest version of the Linux kernel online at www.kernel.org. ### Distribution-specific version numbers Each Linux distribution has a version number as well. These version numbers usually follow the format *x.y,* where *x* is the *major* version, and *y* is the *minor* version. Unlike with the Linux kernel's version numbers, no special meaning is associated with odd- and even-numbered minor versions. Each version of a Linux distribution includes specific versions of the Linux kernel and other major components, such as GNOME, KDE, and various applications. The developers of active Linux distributions usually release new versions of their distribution on a regular basis — about every six to nine months. For example, Ubuntu 13.43 was released in April 2013; 13.10 was released in October 2013. Typically, each new major version of a Linux distribution provides significant new features. Debian always has at least three releases at any time — *stable*, *unstable*, and *testing*. - ◆ Stable: Most users prefer this type of release because it's the latest officially released distribution. - ◆ **Unstable:** The developers are working on this release. - ◆ **Testing:** The release contains packages that have gone through some testing but aren't ready for inclusion in the stable release yet. ### Linux Standard Base (LSB) Linux has become important enough that there's a standard for Linux called the Linux Standard Base (or LSB, for short). *LSB* is a set of binary standards that should help reduce variations among the Linux distributions and promote portability of applications. The idea behind LSB is to provide an application binary interface (ABI) so that software applications can run on any Linux (or other Unix) systems that conform to the LSB standard. The LSB specification references POSIX (Portable Operating System Interface) standards as well as many other standards, such as the C and C++ programming language standards, the X Window System version 11 release 6 (X11R6), and the Filesystem Hierarchy Standard (FHS). LSB version 1.2 (commonly referred to as *LSB 1.2*) was released on June 28, 2002. LSB 2.0 was released on August 30, 2004, and LSB 4.0, on November 11, 2008. The LSB specification is organized into two parts — a common specification that remains the same across all types of processors and a set of hardware-specific specifications, one for each type of processor architecture. For example, LSB 1.2 has architecture-specific specifications for Intel 32-bit (IA32) and PowerPC 32-bit (PPC32) processors. LSB 1.3 adds a specification for the Intel 64-bit (IA64) architecture and IBM zSeries 31-bit (S/390) and 64-bit (S390X) Book I Chapter 1 Introducing Linu processors, in addition to the ones for IA32 and PPC32. LSB 2.0 added specification for the AMD 64-bit (AMD64 or X86_64) processors. The current LSB specification — LSB 4.0 — supports seven processor architectures: IA32, IA64, PPC32, PPC64 (64-bit PowerPC), S390, S390X, and X86_64. An LSB certification program exists. Several Linux distributions are certified to be LSB-compliant, IA32 runtime environments. To discover more about LSB, visit http://www.linuxfoundation.org/collaborate/workgroups/lsb. The latest list of LSB-certified systems is available at www.linuxfoundation.org. ### Contents of a Linux Distribution A Linux distribution comes with the Linux kernel and a lot more software. These software packages include everything from graphical desktops to Internet servers to programming tools for creating new software. In this section, I briefly describe some major software packages that are bundled with typical Linux distributions. Without this bundled software, Linux wouldn't be as popular as it is today. ### GNU software At the heart of a Linux distribution is a collection of software that came from the GNU Project. You get to know these GNU utilities only if you use your Linux system through a *text terminal* — a basic command-line interface that doesn't use onscreen visuals; instead, it shows you a prompt at which you type your commands. (Or you could use a graphical window that mimics a text terminal and still have use of GNU utilities.) The GNU software is one of the basic parts of any Linux distribution. ### What is the GNU Project? GNU is a recursive acronym that stands for GNU's Not Unix. The GNU Project was launched in 1984 by Richard Stallman to develop a complete Unix-like operating system.
The GNU Project developed nearly everything needed for a complete operating system except for the operating system kernel. All GNU software was distributed under the GNU General Public License (GPL). GPL essentially requires that the software is distributed in source-code form and stipulates that any user may copy, modify, and distribute the software to anyone else in source-code form. Users may, however, have to pay for their individual copies of GNU software. The Free Software Foundation (FSF) is a taxexempt charity that raises funds for work on the GNU Project. To find out more about the GNU Project, visit its home page at www. gnu.org. The home page is also where you can find information about how to contact the Free Software Foundation and how to help the GNU Project. As a Linux user, you may not realize the extent to which all Linux distributions rely on GNU software. Nearly all the tasks you perform in a Linux system involve one or more GNU software packages. For example, the GNOME graphical user interface (GUI) and the command interpreter (that is, the bash shell) are both GNU software programs. By the way, the *shell* is the command-interpreter application that accepts the commands you type and then runs programs in response to those commands. If you rebuild the kernel or develop software, you do so with the GNU C and C++ *compiler* (which is part of the GNU software that accompanies Linux). If you edit text files with the ed or emacs editor, again you're using a GNU software package. The list goes on and on. Book I Chapter 1 ntroducing Linu Table 1-2 lists some well-known GNU software packages that come with most Linux distributions. Depending on your interests, you may never need to use many of these packages, but knowing what they are in case you ever do need them is a good idea. | Table 1-2 | Well-Known GNU Software Packages | | | |---------------------|--|--|--| | Software
Package | Description | | | | autoconf | Generates shell scripts that automatically configure sourc code packages. | | | | automake | Generates Makefile.in files for use with autoconf. | | | | bash | The default shell (command interpreter) in Linux. | | | | bc | An interactive calculator with arbitrary-precision numbers. | | | | Binutils | A package that includes several utilities for working with binary files: ar, as, gasp, gprof, ld, nm, objcopy, objdump, ranlib, readelf, size, strings, and strip. | | | | Coreutils | A package that combines three individual packages called Fileutils, Shellutils, and Textutils and implements utilities such as chgrp, chmod, chown, cp, dd, df, dir, dircolors du, install, ln, ls, mkdir, mkfifo, mknod, mv, rm, rmdir, sync, touch, vdir, basename, chroot, date, dirname, echo, env, expr, factor, false, groups, hostname, id, logname, nice, nohup, pathchk, printenv, printf, pwd, seq, sleep, stty, su, tee, test, true, tty, uname, uptime, users, who, whoami, yes, cut, join, nl, split, tail, and wc. | | | | cpio | Copies file archives to and from disk or to another part of the file system. | | | | diff | Compares files, showing line-by-line changes in several different formats. | | | | Software
Package | Description | | | |---------------------|---|--|--| | ed | A line-oriented text editor. | | | | emacs | An extensible, customizable, full-screen text editor and computing environment. | | | | Findutils | A package that includes the find, locate, and xargs utilities. | | | | finger | A utility program designed to enable users on the Internet to get information about one another. | | | | gawk | The GNU Project's implementation of the awk programming language. | | | | gcc | Compilers for C, C++, Objective-C, and other languages. | | | | gdb | Source-level debugger for C, C++, and Fortran. | | | | gdbm | A replacement for the traditional dbm and ndbm database libraries. | | | | gettext | A set of utilities that enables software maintainers to <i>interna tionalize</i> (make the software work with different languages such as English, French, and Spanish) a software package's user messages. | | | | ghostscript | An interpreter for the PostScript and Portable Document Format (PDF) languages. | | | | ghostview | An X Window System application that makes ghostscript accessible from the GUI, enabling users to view PostScript or PDF files in a window. | | | | The GIMP | The GNU Image Manipulation Program, an Adobe Photoshop-like image-processing program. | | | | GNOME | Provides a graphical user interface (GUI) for a wide variety of tasks that a Linux user may perform. | | | | GNUchess | A chess game. | | | | GNU C Library | For use with all Linux programs. | | | | Gnumeric | A graphical spreadsheet (similar to Microsoft Excel) that works in GNOME. | | | | grep package | Includes the grep, egrep, and fgrep commands, which are used to find lines that match a specified text pattern. | | | | groff | A document formatting system similar to troff. | | | | gtk+ | A GUI toolkit for the X Window System (used to develop GNOME applications). | | | | gzip | A GNU utility for compressing and decompressing files. | | | | Software
Package | Description | | | | |---------------------|--|--|--|--| | indent | Formats C source code by indenting it in one of several different styles. | | | | | less | A page-by-page display program similar to more but with additional capabilities. | | | | | libpng | A library for image files in the Portable Network Graphics (PNG) format. | | | | | m4 | An implementation of the traditional Unix macro processor. | | | | | make | A utility that determines which files of a large software package need to be recompiled, and issues the commands to recompile them. | | | | | ncurses | A package for displaying and updating text on text-only terminals. | | | | | patch | A GNU version of Larry Wall's program to take the output of diff and apply those differences to an original file to generate the modified version. | | | | | rcs | Revision Control System; used for version control and management of source files in software projects. | | | | | sed | A stream-oriented version of the ed text editor. | | | | | Sharutils | A package that includes shar (used to make shell archives out of many files) and unshar (to unpack these shell archives). | | | | | tar | A tape-archiving program that includes <i>multivolume</i> support — the capability to archive sparse files (files with big chunks of data that are all zeros), handle compression and decompression, and create remote archives — and other special features for incremental and full backups. | | | | | texinfo | A set of utilities that generates printed manuals, plain ASCII text, and online hypertext documentation (called $info$), and enables users to view and read online $info$ documents. | | | | | time | A utility that reports the user, system, and actual time that a process uses. | | | | Book I Chapter 1 itroducing Lini # GUIs and applications Face it — typing cryptic Linux commands on a terminal is boring. For average users, using the system through a *graphical user interface* (GUI, pronounced "GOO-ee") — one that gives you icons to click and windows to open — is much easier. This is where the X Window System, or *X*, comes to the rescue. X is kind of like Microsoft Windows, but the underlying details of how X works are different from Windows. X provides the basic features of displaying windows onscreen, but (unlike Microsoft Windows) it doesn't come with any specific look or feel for graphical applications. That look and feel comes from GUIs, such as GNOME and KDE, which make use of the X Window System. Most Linux distributions come with the X Window System in the form of XFree86 or X.Org X11 — implementations of the X Window System for 80x86 systems. XFree86 and X.Org X11 work with a wide variety of video cards available for today's PCs. Until early 2004, XFree86 from the XFree86 Project (www.xfree86.org) was the most commonly used X Window System implementation for x86 systems. However, around version 4.4, some changes to the XFree86 licensing terms caused concerns to many Linux and Unix vendors — they felt that the licensing terms were no longer compatible with the GNU General Public License (GPL). In January 2004, several vendors formed the X.Org Foundation (www.x.org) to promote continued development of an open source X Window System and graphical desktop. The first release of X.Org X11 uses the same code that was used by XFree86 4.4, up until the time when the XFree86 license changes precipitated the creation of X.Org Foundation. As for the GUI, Linux distributions include one or both of two powerful GUI desktops: *KDE* (K Desktop Environment) and *GNOME* (GNU Object Model Environment). If both GNOME and KDE are installed on a PC, you can choose which desktop you want as the default — or switch between the two. KDE and GNOME provide desktops similar to those of Microsoft Windows and the Mac OS. GNOME also comes with the Nautilus graphical shell, which makes
finding files, running applications, and configuring your Linux system easy. With GNOME or KDE, you can begin using your Linux workstation without having to know cryptic Linux commands. However, if you ever need to use those commands directly, all you have to do is open a terminal window and type the commands at the prompt. Linux also comes with many graphical applications. One of the most noteworthy programs is *The GIMP* (The GNU Image Manipulation Program), a program for working with photos and other images. The GIMP's capabilities are on a par with those of Adobe Photoshop. Although Linux used to lack in providing common productivity software — such as word processing, spreadsheet, and database applications — this situation has changed. Linux comes with the LibreOffice.org office productivity applications. In addition, you may want to check out the following prominent, commercially available office productivity applications for Linux: ◆ Applixware: This office package is a good example of productivity software for Linux. You can find it at www.vistasource.com. - ◆ **LibreOffice:** Forked from OpenOffice, LibreOffice (www.libreoffice. org) is a well-known productivity software package. The original OpenOffice is available from Apache and can be found at www.openoffice.org. - ◆ CrossOver Office: From CodeWeavers (www.codeweavers.com/ products/crossover-linux/download), CrossOver Office can be used to install your Microsoft Office applications (Office, for example) as well as several other Windows applications in Linux. As you can see, there's no shortage of Linux office applications that are compatible with Microsoft Office. Book I Chapter 1 ntroducing Linux #### Networks Linux comes with everything you need to use the system in networks to exchange data with other systems. On networks, computers that exchange data must follow well-defined rules, or protocols. A *network protocol* is a method that the sender and receiver agree upon for exchanging data across a network. Such a protocol is similar to the rules you might follow when you're having a polite conversation with someone at a party. You typically start by saying hello, exchanging names, and then taking turns talking. That's about the same way network protocols work. The two computers use the same protocol to send bits and bytes back and forth across the network. One of the best-known (and most popular) network protocols is Transmission Control Protocol/Internet Protocol (TCP/IP). TCP/IP is the protocol of choice on the Internet — the "network of networks" that spans the globe. Linux supports the TCP/IP protocol and any network applications that make use of TCP/IP. #### Internet servers Some popular network applications are designed to deliver information from one system to another. When you send electronic mail (e-mail) or visit websites using a web browser, you use these network applications (also called *Internet services*). Here are some common Internet services: - ◆ Electronic mail (e-mail) that you use to send messages to any other person on the Internet using addresses such as joe@someplace.com - ◆ World Wide Web (or simply, the web) that you browse using a web browser - ◆ News services, where you can read newsgroups and post news items to newsgroups - **♦ File transfer utilities** that you can use to upload and download files - ◆ Remote login that you can use to connect to and work with another computer (the remote computer) on the Internet assuming you have the required username and password to access that remote computer Any Linux PC can offer these Internet services. To do so, the PC must be connected to the Internet, and it must run special server software called *Internet servers*. Each of the servers uses a specific protocol for transferring information. For example, here are some common Internet servers that you find in Linux: - ♦ sendmail is the mail server for exchanging e-mail messages between systems using SMTP (Simple Mail Transfer Protocol). - ◆ Apache httpd is the web server for sending documents from one system to another using HTTP (HyperText Transfer Protocol). - vsftpd is the server for transferring files between computers on the Internet using FTP (File Transfer Protocol). - innd is the news server for distribution of news articles in a store-andforward fashion across the Internet using NNTP (Network News Transfer Protocol). - in.telnetd allows a user on one system to log in to another system on the Internet, using the TELNET protocol. - ◆ sshd allows a user on one system to log in securely to another system on the Internet, using the SSH (Secure Shell) protocol. #### Software development Linux is particularly well suited to software development. Straight out the box, it's chock-full of software-development tools, such as the compiler and libraries of code needed to build programs. If you happen to know Unix and the C programming language, you'll feel right at home programming in Linux. As far as the development environment goes, Linux has the same basic tools (such as an editor, a compiler, and a debugger) that you might use on other Unix workstations, such as those from IBM, Sun Microsystems, and Hewlett-Packard (HP). If you work by day on one of these Unix workstations, you can use a Linux PC in the evening at home to duplicate that development environment at a fraction of the cost. Then you can either complete work projects at home or devote your time to software you write for fun and to share on the Internet. #### **Online** documentation As you become more adept at using Linux, you may want to look up information quickly — without having to turn the pages of (ahem) this great book, for example. Luckily, Linux comes with enough online information to jog your memory in those situations when you vaguely recall a command's name but can't remember the exact syntax of what you're supposed to type. Stuff programmers want to know about Linux These features make Linux a productive software-development environment: - GNU C compiler (gcc): Compiles ANSIstandard C programs. - ✓ GNU C++ compiler (g++): Supports ANSIstandard C++ features. - ✓ GNU compiler for Java (gcj): Compiles programs written in the Java programming language. - ✓ GNU make utility: Enables you to compile and link large programs. - ✓ GNU debugger (gdb): Enables you to step through your program to find problems and to determine where and how a program failed. (The failed program's memory image is saved in the core file; gdb can examine this file.) - GNU profiling utility (gprof): Enables you to determine the degree to which a piece of software uses your computer's processor time. - Subversion, Concurrent Versions System (CVS), and Revision Control System (RCS): Maintains version information and controls access to the source files so that two programmers don't inadvertently modify the same source file at the same time. - GNU emacs editor: Prepares source files and even launches a compile-link process to build the program. - Perl: Enables you to write scripts to accomplish a specific task, tying together many smaller programs with Linux commands. - Tool Command Language and its graphical toolkit (Tcl/Tk): Enables you to build graphical applications rapidly. - Python: Enables you to write code in an interpreted programming language comparable to Perl and Tcl. (For example, the Fedora Core installation program, called anaconda, is written in Python.) - ✓ Dynamically linked, shared libraries: Allows your actual program files to be much smaller because all the library code that several programs may need is shared — with only one copy loaded in the system's memory. If you use Linux commands, you can view the manual page — commonly referred to as the *man page* — for a command by using the man command. (You do have to remember that command to access online help.) You can also get help from the GUI desktops. Both GNOME and KDE desktops come with help viewers to view online help information. Most distributions include a help option in the desktop menu or a help icon on the desktop that you can use to get online help. You can then browse the help information by clicking the links on the initial help window. Figure 1-1 shows a typical help window — this one from Ubuntu's desktop. Book I Chapter 1 Introducing Linu # Managing Your PC with Linux desktop. As an operating system, Linux acts as the intermediary through which you — as the "lord of the system" — manage all the hardware. The hardware includes the system box, the monitor, the keyboard, the mouse, and anything else connected to the system box. The catchall term *peripheral* refers to any equipment attached to the system. If you use a laptop computer, all your hardware is packaged into the laptop. Inside that system box is the system's brain — the microprocessor (Intel Pentium 4, for example), also called the CPU — that performs the instructions contained in a computer program. When the microprocessor runs a computer program, that program's instructions are stored in the memory, or *RAM* (random-access memory). This means that any part of the memory can be accessed randomly — in arbitrary order. The system box has another crucial component — the hard drive (or hard disk, as it is sometimes called). The hard drive is the permanent storage space for computer programs and data. It's permanent in the sense that the contents don't disappear when you power off the PC. The hard drive is organized into files, which are in turn organized in a hierarchical fashion into directories and subdirectories (somewhat like organizing papers in folders in the drawers of a file cabinet). To keep a Linux system running properly, you (or someone else) must make sure that the hardware is working properly and that the files are backed up regularly. There's also the matter of *security* — making sure that only legitimate people can access and use the system. These tasks are called *system administration*. If you use Linux at a big facility with
many computers, a full-time system administrator probably takes care of all system-administration tasks. On the other hand, if you run Linux on a home PC, you *are* the system administrator. Don't let the thought frighten you. You don't have to know any magic incantations or prepare cryptic configuration files to be a system administrator. Most Linux distributions include many graphical tools that make system administration a point-and-click job, just like running any other application. #### Distribution media Some Linux distributions come on a single DVD-ROM. After installation, the Linux kernel and all the applications are stored on your hard drive — which is where your PC looks first when you tell it to do something. Typically, the hard drive is prepared to use Linux during the installation process. After that, you usually leave the hard drive alone except to back up the data stored there or (occasionally) to install and update applications. Using CD-ROMs or DVD-ROMs in Linux is easy. While you're logged in at the GNOME or KDE desktop, just pop a CD or DVD in to the drive, and the system should automatically detect the DVD/CD-ROM. Depending on the Linux distribution, either a DVD/CD-ROM icon appears on the desktop or a file manager automatically opens and displays the contents of the DVD/CD-ROM. If all else fails, you can type a simple mount command to associate the DVD/CD-ROM with a directory on your system. This process of accessing the files on a CD or a DVD from Linux is called *mounting* the CD or the DVD. Besides the hard drive and DVD/CD-ROM drive, of course, your PC may have other drives, such as a USB flash drive. Using those disks in Linux is also simple: You insert a disk or drive and double-click the icon that represents that medium on the GUI desktop. Doing so *mounts* the disk or drive so that you can begin using it. ## Peripheral devices Anything connected to your PC is a peripheral device, as are some components (such as sound cards) that are installed inside the system box. You can configure and manage these peripheral devices in Linux. One of the common peripherals is a printer, typically hooked up to the USB (Universal Serial Bus) or parallel port of your PC. (Many distributions come with a graphical printer configuration tool that you can use to configure the printer.) Book I Chapter 1 Introducing Linux Another peripheral device that needs configuration is the sound card. Most Linux distributions detect and configure sound cards, just as Windows does. However, if Linux can't detect the sound card correctly, you may have to run a text mode or graphical tool to configure the sound card. Linux configures other peripheral devices, such as the mouse and keyboard, at the time of installation. You can pretty much leave them alone after installation. Nowadays PCs come with the USB interface; many devices, including printers and scanners, plug into a PC's USB port. One nice feature of USB devices is that you can plug them into the USB port and unplug them at any time — the device doesn't have to be connected when you power up the system. These devices are called *hot plug* because you can plug in a device when the system is *hot*, meaning while it's running. Linux supports many hot plug USB devices. When you plug a device into the USB port, Linux loads the correct driver and makes the device available to applications. ## File systems and sharing The entire organization of directories and files is the *file system*. You can, of course, manage the file system using Linux. When you browse the files from the GNOME or KDE graphical desktop, you work with the familiar folder icons. A key task in caring for a file system is to back up important files. In Linux, you can use the tar program to archive one or more directories on a USB drive or on other media. You can even back up files on a tape (if you have a tape drive). If you have a CD or DVD burner, you can also burn a CD or DVD with the files you want to back up or save for posterity. Linux can also share parts of the file system with other systems on a network. For example, you can use the Network File System (NFS) to share files across the network. To a user on the system, the remote system's files appear to be in a directory on the local system. Linux also comes with the Samba package, which supports file sharing with Microsoft Windows systems. Samba makes a Linux system work just like a Windows file or print server. You can also access shared folders on other Windows systems on your network. #### Network Now that most PCs are either linked in a local area network (LAN) or connected to the Internet, you need to manage your connection to the network as well. Linux comes with a network configuration tool to set up the LAN. For connecting to the Internet with a modem, there's usually a GUI Internet dialup tool. If, like many users, you connect to the Internet with DSL or cable modem, you need a PC with an Ethernet card that connects to the cable or DSL modem. It also means that you have to set up a local area network and configure the Ethernet card. Fortunately, these steps are typically a part of Linux installation. If you want to do the configurations later, you can by using a GUI network configuration tool. Linux also includes tools for configuring a *firewall*, which is a protective buffer that helps keep your system relatively secure from anyone trying to snoop over your Internet connection. You can configure the firewall by using iptables commands or by running a GUI firewall-configuration tool. #### Book I Chapter 1 ntroducing Linu # Getting Started Based on personal experience in exploring new subjects, I prescribe a four-step process to get started with Linux (and with *Linux All-in-One For Dummies*): - 1. Install Linux on your PC (as shown in Book I this one). - **2.** Configure Linux so that everything works to your liking (as shown in Book I). - **3.** Explore the GUI desktops and the applications (as shown in Book II). - **4.** Find out the details of specific subjects, such as Internet servers (as shown in Book IV). In the rest of this chapter, I explain this prescription a bit more. ## Step 1: Install Microsoft Windows usually comes installed on your new PC, but Linux usually doesn't. So your first hurdle is to get Linux onto your PC. Although some vendors are now offering Linux pre-installed, this is still a rarity. After you overcome that initial human fear of the unknown, I'll bet you find Linux fairly easy to install — but where do you *get* it in the first place? Well, the good news is that it's easily found online and Book I shows how to install Linux, step by step. A typical complete Linux distribution is *huge* — but if you have good bandwidth, Linux is free to download. For example, you can visit the Linux Online website at www.linux.org and click the Download button. ## Step 2: Configure When you finish installing Linux, the next step is to configure individual system components (for example, the sound card and the printer) and tweak any needed settings. Book I shows how to configure the nooks and crannies of Linux. If you aren't getting a graphical login screen, the X Window System may not have been configured correctly during installation. You have to fix the X configuration file for the GUI to work. You may want to configure your GUI *desktop* of choice — GNOME or KDE (or both). Each has configuration tools. You can use these tools to adjust the look and feel of the desktop (background, title fonts, or even the entire color scheme). Book II shows how to make your desktop even more your own. After you're through with configuration, all the hardware on your system and the applications should run to your liking. ## Step 3: Explore With a properly configured Linux PC at your disposal, you're ready to explore Linux itself. You can begin the process from the GUI desktop — GNOME or KDE — that you see after logging in. Look at the GUI desktops and the folders and files that make up the Linux file system, as discussed in Book II. You can also try out the applications from the desktop. You find office and multimedia applications and Internet applications to explore. Also try out the shell: Open a terminal window and type some Linux commands in that window. You can also explore the text editors that work in text mode, as covered in Book II. Knowing how to edit text files without the GUI, just in case the GUI isn't available, is a good idea. At least you won't be helpless. ## Step 4: Find out more After you explore the Linux landscape and know what is what, you can dig deeper and find out more about specific subject areas. For example, you may be interested in setting up Internet servers. You can then learn the details of setting up individual servers, such as sendmail for e-mail, Apache for a web server, and the INN server for news, as covered in Book IV. You can find out about many more areas, such as security, scripting, and system administration, as discussed in Books V, VI, and VII. Of course, you can expect this step to go on and on, even after you have your system running the way you want it — for now. After all, learning is a lifelong journey. Bon voyage! # Chapter 2: Installing Linux #### In This Chapter - **✓** Following the installation steps - Checking Your PC's hardware - ✓ Setting aside hard drive space for Linux - ✓ Trying the Ubuntu Live CD - ✓ Installing Linux on a flash drive ost PCs come with Microsoft Windows pre-installed; if you want to use Linux, you usually have to install it. You may feel a tad worried about installing a new operating system on your PC because it's a bit like brain surgery — or, rather, more like grafting a new brain because you can install Linux in addition to Microsoft Windows. When you install two operating systems like that, you can choose to start one or the other as you power up the PC. The biggest headache in adding Linux to a PC with Windows is creating a new *disk partition* —
basically setting aside a part of the hard drive for Linux. The rest of the installation is routine — just a matter of following the instructions. If you want to try any of the Live CDs, you don't have to do any disk partitioning; just boot your PC from the Live CD. But first, take a deep breath and exhale slooowwwly. You have nothing to worry about. # Following the Installation Steps Installing any Linux distribution involves a number of steps, and I will walk through them briefly, without the details. Then you can follow the detailed steps for the specific distributions and install what you want. Some Linux distributions require that you have quite a bit of information about your PC's hardware on hand before installation. If you plan to install Debian, go ahead and gather information about your PC and its peripheral components before starting the installation. Luckily, most Linux installation programs can detect and work with most PC peripherals. Nevertheless, it's a good idea to figure out your PC's hardware so that you can troubleshoot in case something goes wrong with the installation. The very first step is to burn the CD or DVD for your distribution. You can burn the CDs on any system that has a CD/DVD burner. (You must have a DVD burner if you want to burn a DVD, but a DVD burner can burn both CDs and DVDs.) Typically, if you already have a Windows PC with a CD/DVD burner, you can simply use that system to burn the CDs. The second step is to make sure that your PC can boot from the DVD/CD drive. Most new PCs can boot directly from the DVD/CD drive, but some PCs may require your intervention. Typically, the PC may be set to boot from the hard drive before the DVD/CD drive, and you have to get into Setup to change the order of boot devices. To set up a PC to boot from the DVD drive, you have to go into Setup as the PC powers up. The exact steps for entering Setup and setting the boot device vary from one PC to the next, but typically they involve pressing a key, such as F2. When the PC powers up, a brief message tells you what key to press to enter Setup. When you're in Setup, you can designate the DVD/CD drive as the boot device. After your PC is set up to boot from the DVD/CD drive, simply put the DVD or CD in the DVD/CD drive and restart your PC. If you plan to try a Live CD distribution, the third step is to boot your PC from the Live CD or DVD. Otherwise the third step is to make room for Linux on your PC's hard drive. If you're running Microsoft Windows, this step can be easy or hard, depending on whether you want to replace Windows with Linux or keep both Windows and a Linux distribution. If you want to install Linux without removing (or disturbing) Windows, remember that your existing operating system uses the entire hard drive. That means you have to *partition* (divide) the hard drive so that Windows can live in one part of it, and Linux can live in the other. Doing so can be a scary step because you run the risk of clearing the hard drive and wiping out whatever is on the drive. Therefore, *always* make a backup of your system before undertaking any significant changes. To set aside space on your hard drive that the Linux installation program can use, you should use a partitioning program to help you create the partition. If your PC runs Windows 8, Windows 7, or Vista (as well as the much older XP, NT or 2000), you might want to invest in a commercial hard drive partitioning product. On the other hand, you can repartition your PC's hard drive by using a GUI (graphical user interface) tool called *QTParted*, which comes with Knoppix and a number of other distributions. Note that the installers for some Linux distributions, such as openSUSE and Xandros Desktop, can automatically create partitions for Linux by reducing the size of a Windows partition. In that case, you don't need to use a tool such as QTParted to shrink the size of the existing Windows partition on your hard drive. After you set aside a hard drive partition for Linux, you can boot the PC from the selected distribution's CD and start the Linux installation. Quite a few steps occur during installation, and they vary from one distribution to another. When you've come this far, it should be smooth sailing. Just go through the installation screens, and you'll be finished in an hour or two. Most installers, such as the openSUSE interface, display a GUI and guide you through all the steps. One key step during installation involves partitioning the hard drive again, but this time you simply use the extra partition you created previously. After a few configuration steps, such as setting up the network and the time zone, select the software packages to install and then let the installer complete the remaining installation chores. Some distributions make it even easier; they do away with the software-selection step. Instead, they install a default set of software packages. At the end of the installation, reboot the PC. Rebooting is sometimes required as a part of the installation process before the automatic configuration can run. When Linux runs for the first time, you get a chance to perform some more configuration steps and install additional software packages. # Checking Your PC's Hardware If you're concerned that your PC may not be able to run Linux, here are some of the key components of your PC that you need to consider before you start the Linux installation: ◆ **DVD drive:** You must have a DVD drive (either DVD-ROM or DVD burner), and the PC must be able to boot from that drive. The exact model doesn't matter. What does matter is how the DVD drive connects to the PC. Most new PCs have DVD drives that connect to the hard drive controller (*IDE*, for Integrated Drive Electronics, or *ATA*, for AT Attachment). If you add an external DVD drive, it most likely connects to the USB port. Any IDE/ATA or USB DVD drive works in Linux. - ◆ Hard drives: Any IDE disk drive works in Linux. Another type of hard drive controller is SCSI (Small Computer System Interface), which Linux also supports. To comfortably install and play with Linux, you need about 5GB of hard drive space. On the other hand, to try the Live CD versions of Linux, you don't need any space on the hard drive. - ◆ **Keyboard:** All keyboards work with Linux and the X Window System. Book I Chapter 2 Installing Linux - ♦ Monitor: The kind of monitor isn't particularly critical except that it must be capable of displaying the screen resolutions that the video card uses. The screen resolution is expressed in terms of the number of picture elements (*pixels*), horizontally and vertically (for example, 1024 x 768). The installer can detect most modern monitors. If it doesn't detect your monitor, you can select a generic monitor type with a specific resolution (such as 1024 x 768). You can also specify the monitor by its make and model (which you can find on the back of the monitor). - ◆ Mouse: The installation program can detect the mouse. All types of mouse (such as PS/2 or USB) work with Linux and the X Window System. - ◆ Network card: Although not all PCs have network cards, these days it's rare to find one that does not. As long as yours has one, the installer can probably detect and use it. If you have problems, try to find the network card's make and model so you can search online for information about whether Linux supports that card. - ◆ **Processor:** The processor speed, expressed in *MHz* (megahertz) or *GHz* (gigahertz), isn't that important as long as it's over 700 MHz; most processors made in the past few years have speeds well above that. As a general rule, the faster the better. Linux can run on other Intelcompatible processors, such as AMD and VIA processors. - ◆ RAM: RAM is the amount of memory your system has. As with processing speed, the more RAM, the better. You need a minimum of 512MB to install both Linux and the X Window System. With some distributions, the minimum amount is higher, and you'll want still more memory to be able to run a GUI desktop comfortably. - ◆ SCSI controller: Some high-performance PCs have SCSI controllers that connect disk drives and other peripherals to a PC. If your PC happens to have a SCSI controller, you might want to find out the make and model of the controller. - ◆ **Sound card:** If your PC has a sound card and you want to have sound in Linux, you have to make sure it's compatible. You can configure the sound card after successfully installing Linux. - ◆ Video card: Linux works fine with all video cards (also known as display adapters) in text mode, but if you want the GUI, you need a video card that works with the X Window System. The installer can detect a supported video card and configure the X Window System correctly. However, if the installer can't detect your video card, it helps if you know the make and model of the card. - ◆ Printer: In addition to this hardware, you also need to find out the make and model of any printer you plan to use in Linux. Many distributions, such as Debian GNU/Linux, work on any hardware that's compatible with the Linux kernel. For information on Linux-compatible hardware, see www.tldp.org/HOWTO/Hardware-HOWTO. To check whether your PC's hardware is compatible with individual distributions, visit that vendor's site and find its hardware compatibility list. Book I Chapter 2 # Setting Aside Space for Linux In a typical Windows PC, Windows is sitting on one big partition, taking over the entire hard drive. You want to shrink that partition and create room for Linux. During Linux installation, the installation program uses the free space for the Linux partitions. To try out any of the Live CD distributions — such as Ubuntu — you don't have to repartition your hard drive. Just boot your PC from the Live CD. The installers can nondestructively shrink a Windows partition, so you don't need to perform the repartitioning step beforehand. If you plan to install Fedora, Debian, or any other Linux
distribution on the hard drive, you have to repartition your hard drive. If you want to resize the disk partition under Windows, you can use a commercial product, or boot a Linux distribution and then use GParted, the partition editor, to resize the Windows partitions. GParted can resize NTFS (NT File System) partitions, which are used by most newer versions of Windows. When you resize the disk partition, you always risk losing all the data on the hard drive. Therefore, before you resize hard drive partitions with a disk-partitioning tool, *back up your hard drive*. After making your backup — and before you do *anything* to the partitions — please make sure that you can restore your files from the backup. After Ubuntu boots and the GUI desktop appears, follow these steps to reduce the size of the Windows partition: 1. Choose System⇒Administration⇒GParted from the Ubuntu desktop. The GParted window appears, and the tool displays the drives it finds on your PC. The first hard drive appears with a device name /dev/sda, the second one as /dev/sdb, and so on. - 2. Click the hard drive from the list of devices on the right side of the GParted window. - 3. From the list of partitions, click the partition you want to resize. This partition would normally be the largest partition. For Windows 7, Vista, or XP, the partition type is ntfs, as shown in the Type column in the list of partitions. In a typical new PC, you might see two partitions — a smaller fat16 partition and a large ntfs partition. 4. Choose Resize/Move from the GParted menu. The Resize partition dialog box appears. Set the setting for the new size for the partition and then click Resize/ Move. You should choose a size such that you get 4GB or more free space after the partition. You'll see the size of the free space in the Free Space After field in the dialog box. 6. Click Apply to begin the operation after you have specified all changes you want to make. When the warning appears, click Apply and all pending operations will be performed. The partition is changed, and you have free space after the Windows partition. After you create free space on the hard drive for Linux, you can proceed to install the Linux distribution of your choice. # Trying a Live CD Before you install anything, you'll find it worthwhile to try out a Live CD or bootable USB version. In addition to getting a feel for a Linux desktop, you can usually perform a few additional pre-installation chores. To start Ubuntu, for example, boot your PC from the Live CD. A menu will appear from which you can enter various options to control the boot process or check your system to see if it meets hardware requirements. You should choose the default option of booting Ubuntu (this option is automatically performed if you don't make a selection before the menu times out in 30 seconds). A few minutes later, you see the GNOME GUI desktop, which Ubuntu uses. You can now start exploring Ubuntu. If you click the Examples folder, you'll find a number of things that Ubuntu can do. You can also choose GParted (the partition editor) from the System, Administration menu (System-Administration-GParted) to reconfigure the hard drive. When you finish using Ubuntu, choose System Quit. After Ubuntu shuts down, remove the DVD and press Enter. Should you decide you want to install Ubuntu, click the Install icon on the desktop to begin the process. # Installing Linux on a Flash Drive I was a fan of Live CD versions of Linux distributions for a while — but no more. I liked Live CDs because I could create cheap media that I could distribute to students and users so they could enjoy the Linux experience on their own machines without installing the operating system, changing what they were comfortable with, or risking doing harm. In addition, this same user group could quickly change from Fedora to Ubuntu to openSUSE and more. My biggest dislikes of the Live CD distributions were their incredibly slow speed and the inability to save configuration changes easily. Given these substantial issues, I've been seeking a better solution. Thankfully, I've found it: bootable USB distributions. Bootable USB distributions have been around for some time but have all had weaknesses that prevented me from embracing them. Fedora's Live USB implementation, however, is the best I've encountered. It provides a simple method for creation that most users can walk through unescorted, the installation process is nondestructive — allowing you to keep existing files on the USB drive — and retaining changes (data persistence) is straightforward. In the rest of this chapter, I show you how to create a bootable flash drive and use it in your own setting. ## Creating the bootable flash drive Although you can create a bootable flash drive using a number of command-line methods in Linux, the simplest technique uses Windows. (I realize that it might sound like heresy to suggest making a Linux boot medium from Windows, but most users interested in a Live USB implementation of Linux probably run Windows.) Follow these steps to create a bootable flash drive: - Go to http://fedorahosted.org/liveusb-creator and download the liveusb-creator program. - 2. Install the liveusb-creator program. - 3. Open the folder where liveusb-creator was installed. - 4. Double-click the liveusb-creator program to run it. - 5. Under Target Device, select the flash drive. For example, the flash drive may appear with a name such as TravelDrive. 6. Choose where the image (the ISO file) will come from. If you have a slow Internet connection, you can have one Live CD from which you pull the ISO file. If you have a faster Internet connection, use the Download option to access a current ISO file. 7. Set the Persistent Storage amount. This is the amount of storage space allocated to the installation that will always be available. I suggest a value of at least 300MB for the average user. (I don't know why this defaults to 0MB.) 8. Click the Create Live USB button and sit back. You can watch the progress. Be prepared to wait ten minutes for the process to complete. Two folders are created on the drive: syslinux (less than 7MB and responsible for the booting) and LiveOS (the size depends on your storage setting). 9. Close the application and test the newly created bootable drive. Book I Chapter 2 nstalling Linux ## Troubleshooting the workstation I experimented with a number of flash drives and failed to encounter a problem with any as long as 1GB of free space remained after the installation. Smaller drives (2GB or less) are often factory-formatted with FAT (file allocation table) and larger ones are formatted with FAT32; this did not make any difference in installation or usability that I could ascertain. You must be sure that the workstation settings will allow the machine to boot from USB, which typically requires reconfiguring the BIOS. - 1. To begin, reboot the workstation and press the key that takes you to the BIOS configuration (usually F12 or DEL or sometimes F1 or F2). - 2. Choose the Boot menu and enable the setting that reads Boot USB Devices First or something similar. On some computers, the flash drive is hidden under the hard drive section of the boot BIOS. In this case, you need to choose Bootc>Hard Drives, change the primary hard drive to the storage media, and then make sure that the USB is the first choice listed under Boot Device. If the option to boot from USB is Enable/Disable, select Enable and then go to the order of boot devices and move the USB selection above the hard drive selection. 3. Save your changes and exit the BIOS configuration. If you get the single line entry Boot Error and nothing else happens, update the system BIOS per the manufacturer's instructions. # Working daily with the new drive When your system boots, the Fedora environment will load much more quickly than it loads with Live CDs. The USB drive displays the new folders created on it, and other devices can be accessed as usual. The Install to Hard Drive icon remains on the desktop, allowing for a quick permanent transition to Fedora should you decide to do so. To use the operating system, an Internet connection is not required but is strongly recommended because most users will want to download additional programs that allow them to test the operating system's functionality further. Congratulations! You can now start using Fedora! # Chapter 3: Troubleshooting and Configuring Linux #### In This Chapter - **✓** Troubleshooting the installation - ✓ Configuring the X Window System - Resolving installation problems - Setting up your printers - ✓ Managing your DVDs and CD-ROMs - ✓ Installing additional software packages uring the installation of Linux, the installer attempts to detect key hardware components, such as the SCSI controller and network card. According to what it detects, the installer takes you through a sequence of installation steps. For example, if the installer can't detect the network card, it skips the network configuration step. This is okay if you don't, in fact, have a network card — but if you do have one and the installer mistakenly insists that you don't, you have an installation problem on your hands. Another installation problem can occur when you restart the PC and see not the graphical login screen but a text terminal. This error means that something is wrong with the X Window System configuration. In addition, the Linux installation typically doesn't include configuration procedures for every piece of hardware on your PC system. For example, most installations don't set up printers during installation. In this chapter, I show you some ways to troubleshoot installation problems. You find out how to configure X Window System to start with a GUI screen and how to configure a printer. You may also have to install additional software packages; this chapter also walks through how you can install packages in different formats, such as the Red Hat Package Manager (RPM) and
Debian package — the two formats in which most Linux software is distributed. # **Using Text Mode Installation** Most Linux installers attempt to use the X Window System (X) to display the graphical installation screens. If, for instance, the installer fails to detect a video card, X does not start. If — for this reason or any other reason — the installer fails to start X, you can always fall back on a text mode installation. Then you can specify the video card manually or configure X later by using a separate configuration program. You can also configure X by editing its text configuration file. Table 3-1 lists how you can get to the text mode installation screen. Typically, the text mode installation sequence is similar to that of the graphical installation outlined in Chapter 2 of this minibook. You respond to the prompts and perform the installation. | Table 3-1 | Text Mode Installation in Some Linux Distributions | | | |--------------|--|--|--| | Distribution | How to Get to the Text Mode Installer | | | | Debian | Runs in text mode by default. | | | | Fedora | Type text at the boot: prompt after you start the PC from the Fedora CD or DVD. | | | | Knoppix | Start Knoppix in text mode by typing knoppix 2 at the boot: prompt (because Knoppix is a Live distribution, you don't have to install it). | | | | SUSE | At the first installation screen, press F3, use the arrow keys to select the text mode option, and then press Enter. | | | | Ubuntu | Runs in text mode by default. | | | | Xandros | Hold down the Shift key while booting the CD and select Rescue Console. When the bash-3.00# prompt appears, type quick_install and follow the instructions. | | | # Troubleshooting X Every time I installed Linux on an older PC, the GUI installation worked fine during installation, but then the graphical login screen didn't appear when I rebooted the PC for the first time after installation. Instead, I ended up with a text login screen or a black screen with a small X in the middle, or the boot process seemed to hang with a gray screen. If this problem happens to you, here's how you can troubleshoot it: #### 1. Press Ctrl+Alt+Delete to reboot the PC. The PC starts to boot. You get to a screen where GRUB (GRand Unified Bootloader) prompts you for the operating system to boot. (If the distribution uses LILO as the boot loader, you get a text prompt.) 2. For GRUB, press the A key to add an option that tells the Linux kernel to boot to a prompt. For LILO, skip this step. The GRUB boot loader then displays a command line for the Linux kernel and prompts you to add what you want. 3. For GRUB, type a space followed by the word single and press Enter. For LILO, type linux single and press Enter. The Linux kernel boots in a single-user mode and displays a prompt that looks like the following: ``` sh-3.00# ``` Now you're ready to configure X. X uses a configuration file (XF86Config-4 or xorg.conf, depending on the distribution) to figure out your display card, your monitor, and the kind of screen resolution you want. The Linux installer prepares the configuration file, but sometimes the configuration isn't correct. To quickly create a working configuration file, follow these steps: 1. Type the following command: ``` X -configure ``` The X server runs and creates a configuration file. The screen goes blank and then the X server exits after displaying some messages. In Fedora, the last line of the message says the following: ``` To test the server, run 'X -config ///etc/xorg.conf.new' ``` 2. Use a text editor, such as vi, to edit the ///etc/xorg.conf.new file and insert the following line after the line Section "Files": ``` FontPath "unix/:7100" ``` In Fedora, you must also change /dev/mouse to /dev/input/mice. - 3. Type xfs & to start the X font server. - 4. Try the new configuration file by typing the following line: ``` X -config ///etc/xorg.conf.new ``` If you see a blank screen with an X-shaped cursor, the configuration file is working fine. - 5. Press Ctrl+Alt+Backspace to kill the X server. - **6.** Copy the new configuration file to the /etc/X11 directory with the following command: ``` cp ///etc/xorg.conf.new /etc/X11/xorg.conf ``` 7. Reboot the PC by pressing Ctrl+Alt+Delete or typing reboot. If all goes well, you should get the graphical login screen. Book I Chapter 3 Froubleshooting and Configuring Linux The X configuration file created by using the <code>-configure</code> option of the X server does not display at the best resolution. To fine-tune the configuration file, you have to run a utility to adjust the display settings after you reboot the system. Which utility you use depends on the Linux distribution, but most distributions include a utility that enables you to configure the video card, monitor, and display settings through a graphical user interface. # Resolving Other Installation Problems I'm sure I haven't exhausted all the installation problems lurking out there. No one can. So many components in Intel x86 PCs exist that Murphy's Law practically requires that there be some combination of hardware that the installation program can't handle. In this section, I list a few known problems. For others, I advise you to go to Google Groups (http://groups.google.com) and type some of the symptoms of the trouble. Assuming that others are running into similar problems, you can get some indication of how to troubleshoot your way out of your particular predicament. ## Using Knoppix boot commands The Knoppix Live CD can be a great troubleshooting tool because Knoppix is good at detecting hardware and can be run directly from the boot medium (CD/DVD/USB). If you have trouble starting Knoppix, try entering Knoppix boot commands at the boot: prompt. For example, if Knoppix seems to hang when trying to detect a SCSI card, you can disable SCSI probing by typing **knoppix noscsi** at the boot: prompt. Or, if you want the X server to load the *nv module* (for graphics cards based on the NVIDIA chipset), you can type **knoppix xmodule=nv** at the boot: prompt. Table 3-2 lists some commonly used Knoppix boot commands. | Table 3-2 Some Common Knoppix Boot Commands | | | |---|---|--| | Boot Command | What It Does | | | expert | Starts in <i>expert mode,</i> which enables the user to interactively set up and configure Knoppix. | | | failsafe | Boots without attempting to detect hard-
ware (except for the bare minimum needed
to start Linux). | | | fb1280x1024 | Uses fixed framebuffer graphics at the specified resolution (specify the resolution you want, such as 1024 x 768 or 800 x 600). | | | Boot Command | What It Does | |------------------------------|---| | knoppix 1 | Starts Knoppix in run level 1 (single-user mode), which you can use to perform rescue operations. | | knoppix 2 | Starts at run level 2, which provides a text-mode shell prompt only. | | knoppix acpi=off | Disables ACPI (Advanced Configuration and Power Interface) completely. | | knoppix atapicd | Uses the ATAPI CD-ROM interface instead of emulating a SCSI interface for IDE CD-ROM drives. | | knoppix desktop=wmname | Uses the specified Window Manager instead of the default KDE desktop=wmname (where wmname is fluxbox, icewm, kde, larswm, twm, wmaker, or xfce). | | knoppix dma | Enables direct memory access (DMA) for all IDE drives. | | knoppix floppyconfig | Runs the shell script named knoppix.sh from a floppy. (The shell script contains Linux commands that you want to run.) | | knoppix fromhd=/dev/
hda1 | Boots from a previously copied image of
Live CD that's in the specified hard drive
partition. | | knoppix hsync=80 | Uses an 80-kHz horizontal refresh rate for X. (Enter the horizontal refresh rate you want X to use.) | | knoppix lang=xx | Sets the keyboard language as specified by the two-letter code xx (where xx is $cn = Simplified Chinese, de = German, da = Danish, es = Spanish, fr = French, it = Italian, nl = Dutch, pl = Polish, ru = Russian, sk = Slovak, tr = Turkish, tw = Traditional Chinese, or us = U.S. English).$ | | knoppix mem=256M | Specifies that the PC has the stated amount of memory (in megabytes). | | knoppix myconf=/dev/
hda1 | Runs the shell script knoppix.sh from the /dev/hda1 partition (enter the partition name where you have the knoppix.sh file). | | knoppix myconf=scan | Causes Knoppix to search for the file named knoppix.sh, scan, and execute the commands in that file, if it exists. | Book I Chapter 3 Troubleshooting and Configuring Linux (continued) | Does not eject the Live CD after you halt Knoppix. | | | | |---|--|--|--| | | | | | | Does not prompt to remove the Live CD after you halt Knoppix. | | | | | Forces the PS/2 protocol for a PS/2 mouse or touchpad (as opposed to the mouse being detected automatically). | | | | | Causes Knoppix to skip
specific parts of the hardware detection (where xxx identifies the hardware or server that should not be probed: apic = Advanced Programmable Interrupt Controller, agp = Accelerated Graphics Port, apm = Advanced Power Management, audio = sound card, ddc = Display Data Channel, dhcp = Dynamic Host Configuration Protocol, fstab = file system table, firewire = IEEE 1394 high-speed serial bus, pcmcia = PC Card, scsi = Small Computer System Interface, swap = hard drive space used for virtual memory, usb = Universal Serial Bus). | | | | | Uses BIOS directly for bad PCI controllers. | | | | | Skips the Plug and Play (PnP) BIOS initialization. | | | | | Sets the screen resolution in pixels (where $resolution$ is the resolution you want, such as $1024x768$, $800x600$, $640x480$, and so on). | | | | | Checks the data integrity of the Live CD by using the MD5 sum. | | | | | Copies the Live CD to the specified hard drive partition and runs from there (requires 1GB of RAM). | | | | | Copies the Live CD to RAM (memory) and runs from there (requires 1GB of RAM). | | | | | Uses a 50-line text mode display. | | | | | Uses a vertical refresh rate of 60 Hz for X (enter the vertical refresh rate you want X to use). | | | | | Enables the IMPS/2 protocol for wheel mice. | | | | | | | | | | Boot Command | What It Does | |-----------------------------|---| | knoppix
xmodule=modname | Causes the X server to load the module specified by modname so that X works on your video card (where modname is ati, fbdev, i810, mga, nv, radeon, savage, svga, or s3). | | knoppix
xserver=progname | Starts the X server specified by progname (where progname is XFree86 or XF86_SVGA). | oubleshooting an Configuring Linux When you want to issue multiple Knoppix boot commands, simply combine them in a single line. For example, to specify that you want to skip the SCSI auto detection, turn off ACPI, use the U.S. keyboard, use a wheel mouse, and require the X server to load the nv module, enter the following at the boot: prompt: knoppix noscsi acpi=off lang=us wheelmouse xmodule=nv ## The fatal signal 11 error During installation, some people get a fatal *signal 11* error message, which stops the process cold. This error usually happens past the initial boot screen as the installer is starting its GUI or text interface. The most likely cause of a signal 11 error during installation is a hardware error related to memory or the cache associated with the CPU (microprocessor). A signal 11, or SIGSEGV (short for Segment Violation Signal), error can occur in Linux applications. A *segment violation* occurs when a process tries to access a memory location that it's not supposed to access. The operating system catches the problem before it happens and stops the offending process by sending it a signal 11. When that happens during installation, it means the installer made an error while accessing memory, and the most likely reason is a hardware problem. A commonly suggested cure for the signal 11 problem is to turn off the CPU cache in the BIOS. To do so, you have to enter Setup while the PC boots (by pressing a function key, such as F2) and turn off the CPU cache from the BIOS Setup menu. If the problem is due to a hardware error in memory (in other words, the result of bad memory chips), you can try swapping the memory modules around in their slots. You may also consider replacing an existing memory module with another memory module if you have one handy. You can read more about the signal 11 problem at www.bitwizard.nl/sig11. ## Getting around the PC reboot problem On some PCs, when you press Enter at the boot prompt, the initial Linux kernel loads and immediately reboots the PC. This could be due to a bad implementation of ACPI in the PC's BIOS. To bypass the problem, type **linux acpi=off** at the boot prompt to turn off ACPI. If that doesn't work, consult Table 3-3 for other boot options that you might want to try. ## Using Linux kernel boot options When you boot the PC for Linux installation, either from the DVD or the first CD-ROM, you get a text screen with the boot: prompt. Typically, you press Enter at that prompt or do nothing, and the installation begins shortly. You can, however, specify a variety of options at the boot: prompt. The options control various aspects of the Linux kernel startup, such as disabling support for troublesome hardware or starting the X server using a specific X driver module. Some of these boot options can be helpful in bypassing problems that you may encounter during installation. To use these boot options, typically you type **linux** followed by the boot options. For example, to perform text mode installation and tell the kernel that your PC has 512MB of memory, you type the following at the boot: prompt: linux text mem=512M Consult Table 3-3 for a brief summary of some of the Linux boot options. You can use these commands to turn certain features on or off. | Table 3-3 | Some Linux Boot Options | | | |--------------------------|---|--|--| | Boot Option | What It Does | | | | allowcddma | Enables DMA for CD/DVD drive. | | | | apic | Works around a bug commonly encountered in the Intel 440GX chipset BIOS and only executes with the installation program kernel. | | | | acpi=off | Disables ACPI in case there are problems with it. | | | | dd | Prompts for a driver disk during the installation of Red Hat Linux. | | | | display=IP_
address:0 | Causes the installer GUI to appear on the remote system identified by the IP address. (Make sure that you run the command xhost +hostname on the remote system where hostname is the host where you run the installer.) | | | | driverdisk | Prompts for a driver disk during the installation of Red Hat Linux. | | | | enforcing=0 | Turns off Security Enhanced Linux (SELinux) mandatory access control. | | | | Boot Option | What It Does | | | |------------------|---|--|--| | expert | Enables you to partition removable media and prompts for a driver disk. Disables DMA on all IDE devices and can be useful when you're having IDE-related problems. | | | | ide=nodma | | | | | ks | Configures the Ethernet card using DHCP and runs a kickstart installation by using a kickstart file from an NFS server identified by the boot server parameters provided by the DHCP server. | | | | ks=kickstartfile | Runs a kickstart installation by using the kickstart file, specified by <code>kickstartfile</code> . (The idea behind kickstart is to create a text file with all the installation options and then kickstart the installation by booting and providing the kickstart file as input.) | | | | lowres | Forces the installer GUI to run at a lower resolution (640×480). | | | | mediacheck | Prompts you to check the integrity of the CD image (also called the ISO image). The image is checked by computing the MD5 checksum and comparing that with the official Fedora value. Checking a CD-ROM can take a few minutes. | | | | mem=xxxM | Overrides the amount of memory that the kernel detects on the PC. (Some older machines could detect only 16MB of memory, and on some new machines, the video card may use a portion of the main memory.) Make sure you replace xxx with the number representing the megabytes of memory on your PC. | | | | nmi_watchdog=1 | Enables the built-in kernel deadlock detector that makes use of Non-Maskable Interrupt (NMI). | | | | noapic | Prevents the kernel from using the Advanced Programmable Interrupt Controller (APIC) chip. (You can use this command on motherboards known to have a bad APIC.) | | | | nofirewire | Does not load support for FireWire. | | | | noht | Disables <i>hyper-threading,</i> which is a feature that enables a single processor to act as multiple virtual processors at the hardware level. | | | | nomce | Disables self-diagnosis checks performed on the CPU by using Machine Check Exception (MCE). On some machines, these checks are performed too often and need to be disabled. | | | Book I Chapter 3 Troubleshooting and Configuring Linux | Boot Option | What It Does | | | |--------------------|--|--|--| | nomount | Does not automatically mount any installed Linux partitions in rescue mode. | | | | nopass | Does not pass the keyboard and mouse information to stage 2 of the installation program. | | | | nopcmcia | Ignores any PCMCIA controllers in system. | | | | noprobe | Disables automatic hardware detection and instead prompts the user for information about SCSI and network hardware installed on the PC. You can pass parameters to modules by using this approach. | | | | noshell | Disables shell access on virtual console 2 (the one you get by pressing Ctrl+Alt+F2) during installation. | | | | nousb | Disables the loading of USB support during the installation. (Booting without USB support may be useful if the installation program hangs early in the process.) | | | | nousbstorage | Disables the loading of the usbstorage module in the installation program's loader. This option may help with device ordering on SCSI systems. | | | | reboot=b | Changes the way the kernel tries to reboot the PC so that it can reboot even if the kernel hangs
during system shutdown. | | | | pci=noacpi | Causes the kernel to not use ACPI to route interrupt requests. | | | | pci=biosirq | Causes the kernel to use BIOS settings to route interrupt requests (IRQs). | | | | rescue | Starts the kernel in rescue mode, where you get a shell prompt and can try to fix problems. | | | | resolution=HHHxVVV | Causes the installer GUI to run in the specified video mode (where HHH and VVV are standard resolution numbers, such as 640×480 , 800×600 , or 1024×768). | | | | selinux=0 | Disables the SELinux kernel extensions. | | | | serial | Turns on serial console support during installation. | | | | skipddc | Skips the Display Data Channel (DDC) probe of monitors. (This option is useful if probing causes problems.) | | | | vnc | Starts a VNC (Virtual Network Computing) server so that you can control the GUI installer from another networked system that runs a VNC client. | | | Although I mention these Linux kernel boot commands in the context of troubleshooting installation problems, you can use many of these commands anytime you boot a PC with any Linux distribution and you want to turn specific features on or off. #### Book I Chapter 3 Troubleshooting and Configuring Linux # Setting Up Printers In most Linux distributions, you can set up printers only after you install the distribution. The following sections outline the printer configuration steps for Ubuntu and are similar for all distributions. To set up a printer, follow these steps: #### 1. From the desktop, choose System Settings⇔Printers. If you're not logged in as root, the printer configuration tool prompts you for the root password. The printer configuration tool, shown in Figure 3-1, is called system-config-printer. Figure 3-1: The primary printer configuration interface. #### 2. Click the Add button to configure a new printer. If the device can be identified, it will appear in the list. If it can't be identified, you can still continue with the installation and manually add the drivers and configuration data needed. Figure 3-2 shows that the Epson Stylus printer is being connected to the serial port. | | ⊗⊜ | | | | | |--|---|--|----------------|---------|--| | | Select Device | | | | | | | Devices | Settings of the | e serial port | | | | | Serial Port #1 Serial Port #5 Enter URI V Network Printer Find Network Printer AppSocket/HP JetDirect Internet Printing Protocol (ipp) Internet Printing Protocol (ipp14 Internet Printing Protocol (ipp14 Internet Printing Protocol (ipp5) LPD/LPR Host or Printer Windows Printer via SAMBA | Baud Rate
Parity
Data Bits
Flow Control | 115200 | ÷ | | | | | | Default | ÷ | | | Fi 2.0 | | | Default | • | | | Figure 3-2: You can install a local printer or a network printer using the same interface. | | | Default Cancel | Forward | | #### 3. Click Forward to continue. The system searches for drivers and offers choices based on what it thinks you're installing. In the following example, the host is connecting to a local printer. 4. Select the appropriate driver (see Figure 3-3), and then click Forward. Figure 3-3: Choose the appropriate drivers to install. #### 5. Enter the printer name and description variables (see Figure 3-4), and then click Apply. Both the description and location variables are optional, but are helpful if you are configuring this for access by others across the network. Identifying the location can help users know where to pick up the reports they print. Book I Chapter 3 Froubleshooting and Configuring Linux 6. Print a test page to make sure all is working as it should. Make any modifications to the settings as needed using the configuration options, which are shown in Figure 3-5. Figure 3-5: Edit the configuration with the printer configuration tool. name. 7. When the printer is configured as it should be, exit the printer configuration tool. # Managing DVDs, CD-ROMs, and Flash Drives The GUI desktop makes using DVDs, CD-ROMs, and flash drives in Linux easy. Just place the external media in the drive, and an icon appears on the desktop. You can then access the media by double-clicking the icon on the desktop. In some Linux distributions, the GUI automatically opens the contents of the media in a file-manager window soon after you insert the CD or DVD in the drive. To access the files and folders, you simply double-click the icons that appear in the GUI file manager window. If you see an icon for the drive, right-click that icon for a context menu. From that menu, you can eject the media when you're finished. # Installing Other Software The exact steps for installing software depend on the type of package in which the software is distributed. Most Linux software comes in either an RPM file or a Debian package file. The RPM files have an .rpm extension, and the Debian packages have a .deb extension. Most distributions provide GUI installers to ease the process of installing new software packages. In this section, I provide a quick overview of adding software that applies to most distributions (you don't want to add software to Live distributions because Live distributions run from ROM and/or media that start fresh each time you boot). Fedora and SUSE use RPM packages. Debian, Ubuntu, and Xandros are all Debian-based distributions, and as expected, they typically use Debian packages (also called DEB files). However, both RPM and DEB packages can be installed in any Linux distribution. ## Installing software in Debian and Ubuntu The best way to manage software packages in Debian and Debian-based distributions, such as Ubuntu, is to use APT — the Advanced Packaging Tool — which you usually control through the apt-get command. When you install Debian, one of the last steps is to configure the sources for APT. The *APT sources* are the Internet servers (both FTP and web) where APT looks for software packages to download and install on your system. Assuming that APT is properly configured and that your system has a high-speed Internet connection, you can begin installing any package by typing the following command in a terminal window: apt-get install pkgname where *pkgname* is the name of the package that you want to install. If you don't know the package name, start by typing the following command in the terminal window: apt-cache search keyword where *keyword* is related to the package you want to install. For example, to search for a package that has the word *screenshot* in its description and also contains the word *KDE*, I'd type the following. (I use grep to search the output for occurrences of the text *KDE*.) ``` apt-cache search screenshot | grep KDE ``` This command then prints the following line as the result: ``` ksnapshot - Screenshot application for KDE ``` This shows that the ksnapshot package is what I need. If this package was not yet installed, I could then install it by typing the following command: ``` apt-get install ksnapshot ``` That, in a nutshell, is how you can use the command-line tools to look for and install packages in Debian. Debian and older versions of Ubuntu also come with a GUI package installer for APT called *Synaptic Package Manager*, whose use is intuitive: - ♦ **Debian:** Depending upon your version, you will either choose Applications⇔System Tools⇔Synaptic Package Manager from the GNOME desktop or Desktop⇔Administration⇔Synaptic Package Manager. - ♦ **Ubuntu:** In old versions (pre 11.10), choose Select System Administration Synaptic Package Manager. When prompted for a password in Ubuntu, enter your normal user password because Ubuntu has no root user. In newer versions, you can download it with the following command: ``` sudo apt-get install synaptic ``` After Synaptic Package Manager starts, it displays a Quick Introduction dialog box that tells you, briefly, how to mark packages for installation, upgrade, or removal, and how to get to the menu to perform these actions. After reading the Introduction, click Close to get rid of that dialog box and access the Synaptic Package Manager. In place of Synaptic you can use the Software & Updates tool, shown in Figure 3-6, to manage your software (click the Other Software tab to get started). Book I Chapter 3 roubleshooting and Configuring Linux Figure 3-6: The Software & Updates Manager. From here, you can choose to specify any software you want to download and install through APT, as shown in Figure 3-7. Figure 3-7: Specify what software to download and install. Using the Ubuntu Software Center, a feature similar to what is found in many other distributions as well, you can find just about everything you're looking for, as shown in Figure 3-8. # Installing software in Fedora Most Fedora software comes in the form of RPM files. An *RPM* (Red Hat Package Manager) file is basically a single package that contains everything — all the files and configuration information — needed to install a software product. From the GNOME desktop, you use the Add or Remove Software utility — a graphical utility for installing and uninstalling RPMs. Follow these steps: Book I Chapter 3 Troubleshooting and Configuring Linux Figure 3-8: The Ubuntu Software Center has it all. #### If you're not logged in as root, a dialog box prompts you for the root password. The Add or Remove Packages utility starts and gathers information about the status of packages installed on your system. After it sorts through the information about all the installed packages, the utility displays the Package Manager dialog box, which contains a list of all the packages, as shown in
Figure 3-9. Figure 3-9: Package Manager displays the packages available. 2. To install an uninstalled package group, select the check box to the left of that package group's name. For partially uninstalled package groups, click the Details link (or the Optional Packages button) that appears in a column to the right of the package name. A dialog box appears with details of the packages in the package group. 3. In the dialog box, select the packages that you want to install or remove by clicking the names, and then click Close to exit the dialog box. You return to the Package Management dialog box, and if you added or removed any package, the Update (or Apply) button becomes active. 4. Click the Update (or Apply) button to update the packages based on any additions or removals you made in the lists of packages. #### Installing software in SUSE In SUSE, follow these steps to install or remove software: 1. From the main menu, choose YaST to start the YaST Control Center. The YaST Control Center displays categories of tasks on the left side and specific tasks for that category on the right side. - 2. Click the Software category on the left side so that the right side shows the options for software. - 3. Click the Software Management icon on the right side. YaST displays a new window where you can search for software packages. Search for a package by name or select a package by browsing available packages. To search for a package by name, type a keyword in the Search field in the upper-left corner of the window and then click Search. YaST displays the matching packages on the right side of the window. To browse for packages, click Filter in the upper-left corner, select Package Groups from the drop-down list, and click a group to see the list of individual packages in that group. 5. Click the Accept button in the bottom-right corner to begin installing selected packages. YaST checks for *dependencies* — if a package requires other packages to install correctly — before installing packages. If you want to view what changes would occur when you click Accept, click Filter and select Installation Summary. #### Installing software in Xandros Xandros Desktop OS comes with Xandros Networks, which enables you to buy software online as well as install software from a CD or DVD. To start Xandros Networks, double-click the Xandros Networks icon on the Xandros Desktop. Xandros Networks starts, connects to a Xandros server, and displays information about installed, updated, and new applications. To look at the list of new applications, click the plus sign to the left of the New Applications label on the left side of the Xandros Networks window. You get a further list of application categories. If you click a category, the right side of the window displays the names of packages within that category. You can then select a package or an entire category for installation. To install any selected software packages, choose File-Enter Administrator Mode. You're prompted for the administrator (root) password. After entering the root password, you can choose File-Install Selected Applications. Xandros Networks checks for dependencies, prompts you if any further information is needed, and downloads and installs the new software. If you've downloaded a Debian package, you can install it by choosing File Install DEB File from the Xandros Networks menu. Similarly, the menu choice File Install RPM File installs an RPM package. Book I Chapter 3 roubleshooting and Configuring Linux # Chapter 4: Trying Out Linux #### In This Chapter - ✓ Starting Linux and logging in - Getting familiar with the shell - Shutting down the system ou're sitting in front of your PC, about to turn it on. You know that the PC has Linux installed. (Maybe you did the installing yourself, but who's keeping track?) You're wondering what to expect when you turn it on and what you do afterward. Not to worry. If you're using Linux for the first time, this chapter shows you how to log in, check out the graphical desktops, try out some cryptic Linux commands, and finally, shut down the PC. If you try out the Ubuntu Live distribution, all you have to do is boot from the flash drive/DVD/CD (as explained in Chapter 2 of this minibook), and you can try it just like any other Linux distribution. For those of you who already know something about Linux, flip through this chapter to see if anything looks new. You never know what you may not know! # Starting Linux When you turn on the PC, it goes through the normal power-up sequence and loads the boot loader — GRUB or LILO, depending on your Linux distribution and what you select during installation. The *boot loader* (once known as the bootstrap loader) is a tiny computer program that loads the rest of the operating system from the hard drive into the computer's memory. The entire process of starting a computer is called *booting*. For Live distributions, the boot loader is typically ISOLINUX, a boot loader designed to work from an ISO 9660 CD-ROM. The LILO and GRUB boot loaders display a graphical screen with the names of the operating systems that the boot loader can load. For example, if your PC has Windows and Linux, you see both names listed. You can then use the upand down-arrow keys to select the operating system you want to use. If the PC is set up to load Linux by default, wait a few seconds, and the boot loader starts Linux. To be more precise, the boot loader loads the *Linux kernel* — the core of the Linux operating system — into the PC's memory. Other boot loaders, such as ISOLINUX, may display a text boot: prompt at which you can type boot commands to load specific operating systems and to pass options to whichever operating system you load. While the Linux kernel starts, you see a long list of opening messages, often referred to as the *boot messages*. (You can see these messages at any time by typing the command **dmesg** in a terminal window.) These messages include the names of the devices that Linux detects. One of the first lines in the boot messages reads ``` Calibrating delay loop . . . 4997.12 BogoMIPS (lpj=2498560) ``` BogoMIPS is Linux jargon (explained in this chapter in a handy sidebar) for a measure of time. The number that precedes BogoMIPS depends on your PC's processor speed. The kernel uses the BogoMIPS measurement when it has to wait a small amount of time for some event to occur (such as getting a response back from a disk controller when it's ready). After the boot messages appear, some Linux distributions (such as Fedora) switch to a graphical boot screen that shows information about the progress of system startup. When you boot some Linux distributions (such as Fedora and Xandros Desktop OS) for the first time after installation, you get a configuration program that guides you through some configuration steps, such as setting the date and time and adding user accounts. To complete such first-time configuration steps, all you have to do is enter the requested information. After Linux boots, you typically get a graphical login screen. For some distributions, such as Knoppix, you get the desktop without having to log in as a user. On other Live distributions, you have to log in. Figure 4-1 shows the Ubuntu desktop after I booted a PC from the Ubuntu Live distribution. For some distributions, you might be logged in automatically. For others, a graphical login screen will appear asking you to authenticate with the username and password given during (or at any time after) the installation. Every distribution utilizes the root username, which happens to be the *superuser* (the administrator account). Whether you install Linux yourself or someone installs it for you, you need to know the root password. Without that, you can't do many of the tasks necessary to find out how Linux works. You shouldn't normally log in as root. When you log in as root, you could accidentally damage your system because you can do anything when you're root. Always log in as a normal user. When you need to perform any task as root, type **su** - in a terminal window and enter the root password. Book I Chapter 4 Trying Out Linux Figure 4-1: The Ubuntu Live desktop. In Ubuntu, you define only a normal user account; Ubuntu doesn't give you the opportunity to define a root user account. Whenever you want to perform any tasks that require you to be root, you have to use the sudo command (an abbreviation for "superuser do"). The default password for root is the one you gave during the installation of the operating system. # What are BogoMIPS and LPJ? When Linux boots, you get a message that says Calibrating delay loop . . . 4997.12 BogoMIPS (lpj=2498560), with some number before the word BogoMIPS. BogoMIPS is one of those words that confounds new Linux users, but it's just jargon with a simple meaning. BogoMIPS is Linus's invention (yes, the same Linus Torvalds who started Linux), and it means bogus MIPS. As you may know, MIPS is an acronym for millions of instructions per second — a measure of how fast your computer runs programs. Unfortunately, MIPS isn't a very good measure of performance; the MIPS measurements of different types of computers are difficult to compare accurately. BogoMIPS is basically a way to measure the computer's speed that's independent of the exact processor type. Linux uses the BogoMIPS number to calibrate a *delay loop*, in which the computer keeps running some useless instructions until a specified amount of time passes. The reason for killing valuable processor time like this is to wait for some slowpoke device to get ready for work. Oh . . . about *LPJ* — it's a recent term that stands for *loops per jiffy*, and it's another measure of time delay used by the kernel. The Linux kernel considers time in increments of jiffies, and a *jiffy* is defined as the time period that is equal to one second divided by the value of a kernel variable named HZ. In other words, HZ jiffies are in each second. To log in as user
spiderman, for example, type **spiderman** in the first text field and press Enter. (Move the cursor to the login dialog box before you begin typing.) Then type spiderman's password and press Enter. You then see the initial graphical user interface (GUI). What you get depends on your choice of GUI — GNOME or KDE. If someone made the choice for you, don't worry — GNOME and KDE are both quite good and versatile. Chapters 1 and 2 in Book II explore the GUI desktops — first GNOME and then KDE. This section focuses on the command line — the only interface you'll have access to if you experience problems loading a graphical desktop. # Playing with the Shell Linux is basically Unix, and Unix just doesn't feel like Unix unless you can type cryptic commands in a text terminal. Although GNOME and KDE do a lot to bring us into the world of windows, icons, mouse, and pointer — affectionately known as *WIMP* — sometimes you're stuck with nothing but a plain text screen with a prompt that looks something like this (when you log in as edulaney): edulaney@linux:/etc> You see the text screen most often when something is wrong with the X Window System, which is essentially the machinery that runs the windows and menus that you normally see. In those cases, you have to work with the shell and know some cryptic Linux commands. You can prepare for unexpected encounters with the shell by trying some Linux commands in a terminal window while you're in the GNOME or KDE GUI. After you get the hang of using the terminal, you might even keep a terminal window open so you can use one of those cryptic commands — simply because it's faster than pointing and clicking. Those two-letter commands do pack some punch! #### Starting the bash shell Simply put, the *shell* is the Linux *command interpreter* — a program that reads what you type, interprets that text as a command, and does what the command is supposed to do. Before you start playing with the shell, open a terminal window. In either GNOME or KDE, the panel typically includes an icon that looks like a monitor. When you click that icon, what appears is a window with a prompt, like the one shown in Figure 4-2. That's a terminal window, and it works just like an old-fashioned terminal. A shell program is running and ready to accept any text that you type. You type text, press Enter, and something happens (depending on what you typed). Book I Chapter 4 irying Out Linux Figure 4-2: The terminal window awaits your input. If the GNOME or KDE panel on your desktop doesn't seem to have an icon that starts a terminal or shell window, search through the Main menu hierarchy and you should be able to find an item labeled Console or Terminal. Choosing that item should then open a terminal window. The prompt that you see depends on the shell that runs in that terminal window. The default Linux shell is bash (which stands for Bourne-Again SHell). bash understands a host of standard Linux commands, which you can use to look at files, go from one directory to another, see what programs are running (and who else is logged in), and a whole lot more. In addition to the Linux commands, bash can run any program stored in an executable file. bash can also execute *shell scripts* — text files that contain Linux commands. #### Understanding shell commands Because a shell interprets what you type, knowing how the shell figures out the text that you enter is important. All shell commands have this general format: ``` command option1 option2 . . . optionN ``` Such a single line of commands is commonly called a *command line*. On a command line, you enter a command followed by one or more optional parameters (or *arguments*). Such command-line options (or command-line arguments) help you specify what you want the command to do. One basic rule is that you have to use a space or a tab to separate the command from the options — and to separate options from each other. If you want to use an option that contains embedded spaces, you have to put that option within quotation marks. For example, to search for two words of text in the password file, I enter the following grep command. (grep is one of those cryptic commands used to search for text in files.) ``` grep "WWW daemon" /etc/passwd ``` When grep prints the line with those words, it looks like the following. (What you see on your system may differ from what I show.) ``` wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false ``` If you created a user account in your name, go ahead and type the grep command with your name as an argument but remember to enclose the name in quotes. #### Trying a few Linux commands While you have the terminal window open, try a few Linux commands just for fun. I will guide you through some examples to give you a feel for what you can do at the shell prompt. To see how long the Linux PC has been up since you last powered it up, type the following. (*Note:* I show the typed command in bold, followed by the output from that command.) ``` uptime 12:06:34 up 59 days, 16:23, 4 users, load average: 0.56, 0.55, 0.37 ``` The part up 59 days, 16:23 tells you that this particular PC has been up for nearly two months. Hmmm...can Windows do that? To see what version of Linux kernel your system is running, use the uname command like this: ``` uname -srv ``` This runs the uname command with three options: -s, -r, and -v (which can be combined as -srv, as this example shows). The -s option causes uname to print the name of the kernel, -r prints the kernel release number, and -v prints the kernel version number. The command generates the following output on one of my Linux systems: ``` Linux 3.9.31.5-127.fc12.i686 #1 SMP Sat Nov 23 21:41:45 EST 2013 ``` In this case, the system is running Linux kernel version 3.9.31. To read a file, use the more command. For example, type more /etc/passwd to read the /etc/passwd file. The resulting output looks similar to the following: ``` root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/bin/bash daemon:x:2:2:Daemon:/sbin:/bin/bash lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false news:x:9:13:News system:/etc/news:/bin/bash uucp:x:10:14:Unix-to-Unix Copy system:/etc/uucp:/bin/bash . . . lines deleted . . . ``` To see a list of all the programs currently running on the system, use the ps command, like this: ``` ps ax ``` The ps command takes many options, and you can provide these options without the usual dash prefix. This example uses the a and x options. The a option lists all processes that you're running, and the x option displays the rest of the processes. The result is that ps ax prints a list of all processes running on the system, as shown in the following sample output of the ps ax command: ``` PID TTY STAT TIME COMMAND 1 ? S 0:01 init [5] 2 ? SN 0:00 [ksoftirqd/0] 3 ? S< 0:00 [events/0] 4 ? S< 0:00 [khelper] 9 ? S< 0:00 [kthread] 22 ? S< 0:00 [kblockd/0] 58 ? S 0:00 [kapmd] 79 ? S 0:00 [pdflush] 80 ? S 0:00 [pdflush] 82 ? S< 0:00 [aio/0] . . . lines deleted . . 5325 ? Ss 0:00 /opt/kde3/bin/kdm 5502 ? S 0:12 /usr/X11R6/bin/X -br -nolisten tcp :0 vt7 -auth /var/lib/xdm/authdir/authfiles/A:0-p1AOrt 5503 ? S 0:00 -:0 6187 ? Ss 0:00 /sbin/portmap 6358 ? Ss 0:00 /bin/sh /usr/X11R6/bin/kde 6566 ? Ss 0:00 /usr/sbin/cupsd 6577 ? Ssl 0:00 /usr/sbin/nscd . . . lines deleted . . . ``` Amazing how many programs can run on a system even when only you are logged in as a user, isn't it? As you can guess, you can do everything from a shell prompt, but it does take some getting used to. Book I Chapter 4 Trying Out Linux # Shutting Down When you're ready to shut down Linux, you must do so in an orderly manner. Even if you're the sole user of a Linux PC, several other programs usually run in the background. Also, operating systems, such as Linux, try to optimize the way that they write data to the hard drive. Because hard-drive access is relatively slow (compared with the time needed to access memory locations), data generally is held in memory and written to the hard drive in large chunks. Therefore, if you simply turn off the power, you run the risk that some files aren't updated properly. Any user (you don't even have to be logged in) can shut down the system from the desktop or from the graphical login screen, although some distributions, such as Debian, prompt you for the root password. Choose Main Menu-Log Out (or look for a Log Out option in the menus). A Log Out dialog box appears, such as the one shown in Figure 4-3, providing options for rebooting, halting the system, or simply logging out. To shut down the system, simply select Shutdown and click OK. The system then shuts down in an orderly manner. Figure 4-3: The Log Out dialog box. If the logout menu doesn't have an option to shut down, first log out and then select Shutdown from the graphical login screen. You can also shut down a Linux computer from a terminal with the command init 0. This method is sometimes required if you are running the operating system within a virtual software manager such as VMWare. While the system shuts down, you see messages about processes shutting down. You may be surprised at how many processes there are even when no one is explicitly running any programs on the system. If your system doesn't automatically power off on shutdown, you can manually turn off the power. Shutting down or rebooting the system may *not* require root access. This is why it's important to make sure that physical access to the console is protected adequately so that anyone who wants to can't simply walk up to the console and shut down your system. You don't always need to shut down when you're finished with a session; instead, you may choose to simply log out. To log out of KDE, choose Main Menu-Logout. You can also right-click an empty area of the desktop and choose Logout from the context menu that appears. To log out from GNOME, choose System-Log Out. Click OK when a dialog box asks if you
really want to log out. (In some GNOME desktop distributions, the menu option to log out is the second or third menu button from the left in the top panel.) Book I Chapter 4 Trying Out Linux # **Book II Linux Desktops** # Contents at a Glance | Chapter 1: GNOME, Unity, Cinnamon, and MATE | | |--|-----| | Getting to Know the GNOME Desktop | 70 | | Understanding the GNOME Panels | 71 | | Looking at Unity | | | Looking at Cinnamon | | | Looking at MATE | 76 | | Chapter 2: The KDE Desktop | | | Getting to Know the KDE Desktop | 79 | | Understanding the KDE Panel | | | Configuring the KDE Bottom Panel | | | Configuring the KDE Desktop | 86 | | Chapter 3: Commanding the Shell | | | Opening Terminal Windows and Virtual Consoles | | | Using the bash Shell | | | Discovering and Using Linux Commands | | | Writing Shell Scripts | 106 | | Chapter 4: Navigating the Linux File System | | | Understanding the Linux File System | | | Navigating the File System with Linux Commands | | | Chapter 5: Introducing Linux Applications | | | Taking Stock of Linux Applications | | | Introducing Office Applications and Tools | 128 | | Checking out Multimedia Applications | | | Using Graphics and Imaging Apps | | | Chapter 6: Using Text Editors | | | Using GUI Text Editors | | | Text Editing with ed and vi | | # Chapter 1: GNOME, Unity, Cinnamon, and MATE #### In This Chapter - **✓** Discovering GNOME's common features - **✓** Understanding the GNOME panels - Looking at Unity - Exploring Cinnamon - ✓ Finding a MATE n the days of old, Linux distributions used to come with one or both of two popular graphical user interfaces (GUIs): GNOME and KDE. GNOME and KDE are similar to Microsoft Windows but unique in one respect: Unlike Microsoft Windows, you can choose your GUI in Linux. If you don't like GNOME, you can use KDE; and if you don't like KDE, you can use GNOME. With both installed, you can switch between the two in a matter of seconds. Try doing that with Microsoft Windows! Today, that basic choice is often still the case, with one big exception: GNOME has given birth to a number of different variants. You'll find GNOME widely used, but you'll also find that some distributions like to include desktops like Unity, Cinnamon, and MATE. When you encounter them, just know that they started as GNOME and were altered to fit some specific purposes. They have the same basic structure; we walk through them here. GNOME and KDE were developed independently of Linux, and they run on other UNIX operating systems besides Linux. You also have the option to install other GUIs, such as FVWM and Xfce, in Linux. Visit www.freedesktop.org/wiki/Desktops to see a list of other X desktops (desktops that run on X Window System). This chapter explores the major features of GNOME and its variants; Chapter 2 in this minibook does a similar comparison of KDE. You can best figure out these GUIs by simply starting to use them. No matter which GUI you decide to use, all GUI applications — whether they're based on GNOME or KDE — run on all GUI desktops. In other words, you can run KDE applications under GNOME and vice versa. The only hurdle is that sometimes both GNOME and KDE applications may not be installed by default. Each Linux distribution typically installs one GUI by default. Each distribution also customizes that GUI to create a desktop that's unique to the distribution. Because of this, there may be subtle, minor differences between what you see in your distribution and what is described here. # Getting to Know the GNOME Desktop The initial desktop for GNOME looks like any other popular GUI, such as Microsoft Windows or the Mac OS X desktop. Figure 1-1, for example, shows the typical GNOME desktop. Figure 1-1: A clean GNOME desktop in Fedora. Running the Live distribution, a number of icons that would be present if the operating system were installed will not be there. When the system is installed, the desktop initially shows icons for your computer, your home folder, and the trash can for deleted files. Unlike some other distributions, Fedora strives for a minimum of desktop icons and has a clean look. The GNOME desktop displays a context menu when you right-click an object or anywhere on the desktop. Depending on where you click, the menu can offer the following: - ◆ New Folder to create a new folder in a directory - Properties to see the properties, including permissions, associated with a file or folder - ◆ Open to open a folder or file - **♦ Compress** to reduce the size of the file - **♦ Make Link** to create a shortcut Figure 1-2 shows the context menus in a typical GNOME folder. If there are any menu options with a right-pointing arrow, it indicates that they have other menus that appear when you put the mouse pointer over the arrow. Book II Chapter 1 NOME, Unity, innamon, and MATE Figure 1-2: Standard menu choices in GNOME for a folder. Many items on this context menu are the same no matter what icon you click, but right-clicking certain icons (for example, the Trash icon) produces a somewhat different menu. For the Trash icon, the icon context menu typically provides an option to permanently delete the items in the trash. (You get a chance to say Yes or No.) I bet you see a pattern here: the right-click. No matter where you are in a GUI desktop, *always right-click before you pick*. You're bound to find something useful when you right-click! # Understanding the GNOME Panels The GNOME desktop has *panels* and each panel is similar to the Windows taskbar. The top panel has menu choices on the left, a time display in the center, and icons for common choices on the right. Between the left menu and the time, the panel shows any applications you've started (or that were automatically started for you). #### The top panel The top panel is the long bar that stretches across the top of the GNOME desktop. Figure 1-3 shows a typical view of the GNOME top panel. The panel is a parking place for icons. Some icons start programs when you click them. Some show status (for example, what programs are currently running) as well as information such as date and time. # The desktop After you choose Activities, the leftmost area of the desktop in GNOME shows the applications that can be opened in a panel that you can think of as the *Main Menu*. The Main Menu panel, like the Start button in Microsoft Windows, is where you typically find all your applications, organized into submenus. Figure 1-4 shows an example of this, again from Fedora. Figure 1-4: The GNOME desktop. In the case of the Live distribution version of Fedora, the default icons on this main menu (also known as the Favorites menu) represent the following features: - ♦ Firefox web browser - ◆ Evolution email package - ♦ Empathy contact manager - ♦ Rhythmbox - ♦ Shotwell - ◆ LibreOffice Writer - ♦ Shortcut to your files - ♦ Shortcut to your documents - ♦ Install icon - **♦** Link to your recent applications You can click any icon to start the application associated with it, or rightclick to start it in a new window or remove it from the menu. Chapter 5 of this minibook looks at applications, including the Firefox web browser and others discussed here. On the right side of the desktop, you'll see a quick method of accessing your various desktops — the Workplace Switcher. Assume, for example, that you're working on a number of projects at once. You can bounce between them by choosing Activities, and then moving your mouse over to the panel on the right so it automatically expands to show you your options (as illustrated by Figure 1-5). #### The bottom panel In addition to the top panel, GNOME also includes a bottom panel. It does not appear onscreen by default (unlike the arrangement in KDE), but you can use it to find important information. Figure 1-6 is an example of this panel, showing three important notifications from the system and a link to a USB drive. Book II Chapter 1 GNOME, Unity, Cinnamon, and MATE Figure 1-5: Choose between desktops. Figure 1-6: The bottom panel in GNOME. # Looking at Unity Just as there are differences among Windows desktops from Windows XP to versions 7 and 8, so too the GNOME desktop has variations. The first of these is Unity — which, while available for other distributions, is most closely associated with Ubuntu. Figure 1-7 shows an example of this desktop. Unity was created by Canonical and Mark Shuttleworth (respectively the organization behind — and the head of — Ubuntu). Notice that the same clean desktop look of GNOME prevails. What differs is that the makers of Unity strive to make it as easy as possible for a user with no previous knowledge to use — and that makes it ideal for netbooks as well as desktops. Figure 1-8 shows an example of the desktop with a terminal window open and the drop-down menu displayed. Book II Chapter 1 GNOME, Unity, Cinnamon, and MATE Figure 1-8: The Unity desktop focuses on simplicity. One of the biggest pluses behind this desktop is that Unity is touch-ready. # Looking at Cinnamon The Cinnamon desktop looks much like GNOME used to look several versions ago. Figure 1-9 shows an example of it in Linux Mint. Notice how similar this looks to Windows of the XP era. Figure 1-9: The Cinnamon desktop resembles Windows. The leftmost icon on the bottom panel is the *Main Menu* button. The Main Menu button, like the Start button in Microsoft Windows, is where you typically find all your applications, organized into submenus. Click the Main Menu button to bring up the first-level menu. Then mouse over any menu item containing an arrow to bring up the next-level menu, and so on. You can go through a menu hierarchy and make selections from the final menu. In addition to the Main Menu on the bottom panel, in Cinnamon that bottom panel can make almost anything you want to do possible. Among the choices here: - Show Desktop: Hide (but do not close) all windows and display the desktop. - **♦ Firefox Web Browser:**
Quickly access the web. - **♦ Terminal:** Open a terminal window. - **♦ Files:** Display your files. - ◆ Open Windows: Jump back and forth between any open windows. - Active Icons: for ejecting drives, adjusting volume, viewing battery life, and so on. # Looking at MATE The last GNOME variant to explore is MATE. Like Cinnamon, this desktop is often associated with Linux Mint — and the two look very much alike. Figure 1-10 shows an example of MATE in Linux Mint. Figure 1-10: The MATE desktop looks like both Cinnamon and Windows. As in life, so in Linux: Which desktop you choose to use is as much a matter of preference as which car you drive, which cologne you wear, or which outfit you buy. It's important to what you're comfortable with and try to interface with it as best you can. In Chapter 2 of this minibook, we move away from GNOME altogether and look at its prime competitor: KDE. Book II Chapter 1 GNOME, Unity, Cinnamon, and MATE # Chapter 2: The KDE Desktop #### In This Chapter - **✓** Discovering KDE's common features - **✓** Introducing the Main Menu - Configuring the panel and the desktop s mentioned in Chapter 1 of this minibook, Linux distributions come with one (or both) of two popular graphical user interfaces (GUIs) — GNOME (or one or more of its variants) and KDE. With both interfaces installed, you can switch between the two in a matter of seconds. If you don't like GNOME, you can use KDE; or if you don't like KDE, you can use GNOME. This chapter explores the major features of KDE, just as Chapter 1 of this minibook examines GNOME. I strongly encourage you to try both GUIs before you decide which one you're most comfortable using. Remember, you can run KDE applications under GNOME and vice versa. Several installation procedures, including those for Fedora and openSUSE, allow you to choose to install KDE or GNOME. Installing only one interface by default allows for a quicker and easier setup and installation; you can always go back and install the other interface later. Each distribution customizes the desktop, so there may be subtle, minor differences between what you see in your distribution and what's described here. # Getting to Know the KDE Desktop The initial desktop for KDE looks like any other popular GUI, such as Microsoft Windows desktop or the Mac OS X desktop. Figure 2-1 shows a typical KDE desktop. *KDE* stands for the *K Desktop Environment*. The KDE project started in October 1996 with the intent to develop a common GUI for Unix systems that use the X Window System. The first beta version of KDE was released a year later, in October 1997. KDE version 1.0 was released in July 1998. Figure 2-1: A clean KDE desktop. Figure 2-1 is from openSUSE 12, which strives for a minimum of desktop icons. Along the bottom of the desktop is the *panel* — which is similar to the top and bottom bars in the Windows taskbar. The panel has buttons on the left (shortcuts to various programs), a set of buttons to the available desktops, a task area, a time display, and (to the right) icons that provide volume control and access to the KDE's Clipboard manager, Klipper. In the middle part of the panel are buttons for any applications that you started (or that were automatically started for you). #### Desktop context menus The KDE desktop displays a context menu when you right-click a clear area on the desktop. The context menu offers a menu that includes the following options (with slight variations between distributions): - ♦ Run Command - ♦ Lock Screen - ◆ Leave (exit the desktop) - ◆ Desktop Settings (set such onscreen features as the wallpaper) Figure 2-2 shows the desktop context menu in a typical KDE desktop. Figure 2-2: The context menu in KDE. Book II Chapter 2 The KDE Deskto #### Icon context menus Right-clicking any icon in KDE displays another menu, as shown in Figure 2-3. Many items on this context menu are the same no matter what icon you click, but right-clicking certain icons (for example, the CD-ROM device icon) produces a somewhat different menu. Desktop menu options with a right-pointing arrow have other menus that appear when you put the mouse pointer over the arrow. You can perform the following typical tasks from icon context menus: - ♦ Open a folder in a file manager - ◆ Open a file with an application that you choose - ◆ Cut or copy - ◆ Rename the icon - ♦ Move the icon to the trash - ♦ View the properties of that icon For the CD-ROM device icon and similar devices, the icon context menu typically provides an option to eject the media. No matter where you are in a GUI desktop, *always right-click before you pick*. You're bound to find something useful when you right-click! Figure 2-3: The pop-up menu for an icon in KDE. # Understanding the KDE Panel The *panel* is the long bar that stretches across the bottom of the desktop. Figure 2-4 shows a typical view of the KDE panel. The panel is a parking place for icons. Some icons start programs when you click them. Some show status (for example, what programs are currently running) as well as information such as the date and time. If you move the mouse pointer on top of an icon, a Help balloon pops up and gives you a helpful hint about the icon. #### The Main Menu button The leftmost icon on the KDE panel is the *Main Menu* button. (KDE documentation calls the Main Menu button the *Application Starter*). Like the Start button in Microsoft Windows, the Main Menu button is where you typically find all your applications, organized into submenus. The Main Menu button is often labeled K, although the letter can be changed by the distribution. Click the Main Menu button to see the first-level menu. Then mouse over any menu item with an arrow to bring up the next-level menu and so on. You can go through a menu hierarchy and make selections from the final menu. Figure 2-5 shows the Main Menu hierarchy in a typical KDE desktop. Book II Chapter 2 The KDE Deskto Figure 2-5: The KDE menu hierarchy. The most recent versions of KDE feature the KickOff application launcher as their main menu. KickOff allows you to access frequently used applications more quickly than navigating through the traditional menu hierarchy. In most desktops, clicking the Main Menu button to open KickOff presents the following top-level categories: - ◆ Favorites: Easy access to frequently used applications and documents. To quickly add a file to your Favorites, right-click it and choose Add to Favorites. - ◆ **Applications:** The applications and tools installed on your system. Click a subcategory with a right-pointing arrow to open more options. - ◆ Computer: Access to hard drives and removable memory devices, as well as the trash. - ◆ Recently Used: A chronological display of recently opened documents and applications. - **♦ Leave:** Options to log out, restart, shut down the computer, and more. In the Applications tab, you will find the following menu subcategories (and probably a few more depending on which distribution you are using): - ◆ Games: A menu of games (and a lot of them at that) such as arcade games, board games, and card games. - ◆ **Graphics:** Programs such as Flickr, KolourPaint, and KSnapshot (used to take the screenshots in this chapter). - Internet: Internet applications, such as a web browser, an e-mail reader, and an instant messenger. - ◆ Multimedia: Multimedia applications such as a CD player, a sound mixer, a sound recorder, and volume control. - ◆ Office: Office applications such as the LibreOffice.org Office suite (includes the Writer word processor, the Calc spreadsheet, the Impress slide presentation program, and the Draw drawing program). - ◆ System: The utilities needed for system configuration. An example of the System menu is shown in Figure 2-6. - ◆ Utilities: Additional miscellaneous utilities that can be utilized by KDE, including text-to-speech tools, a personal alarm scheduler, and a screen magnifier. Figure 2-6: The System menu choices. Three additional KDE menu choices — Administration, Settings, and System — may be present and will help you configure almost anything you need. They're not present in openSUSE because it uses YaST as the interface to accomplish those tasks. In each distribution, the main menu and KickOff have different categories but the same menu organization, so you should usually be able to find what you need. #### Panel icons In addition to the Main Menu button, the KDE panel has several icons (labeled in Figure 2-4). You can identify any icon by moving your cursor over it and reading the pop-up description that appears. The most common icons are as follows: - ◆ **Desktop Pager:** Navigate between workspaces or "virtual desktops." - ◆ **Open windows:** Display all currently open windows. - **♦ Active window:** Switch to another running application or window. - ◆ **Network connection:** Display information about current wired or wireless connections. - ◆ **Volume:** Display a volume control bar that you can use to change the sound's volume by dragging a slider. - ◆ Notifications and Jobs: Mouse over to see the progress of current jobs such as file transfers or printing documents. - ◆ Time: Display the time; clicking displays a calendar that shows the current date. - **♦ Panel toolbox:** Adjust size, location, and controls for the panel. # Configuring the KDE Bottom Panel For all the power inherent in the KDE panel, it also has a great deal of flexibility. If you right-click a blank spot on the panel, the menu shown in Figure 2-7 appears. You use this menu to add and remove items from the panel and even create an additional panel (which allows you to configure your desktop to look and work as much like GNOME as you want it to). The most powerful menu choice is Panel Options. Choosing Panel Options. Panel Settings: More Settings displays the utility shown in Figure 2-8. From here, you can place the panel in a location other than its default location along the bottom, adjust the alignment of the panel, automatically hide
the panel, select whether windows will appear in front of or behind the panel, and more. Book II Chapter 2 The KDE Desktop Figure 2-7: You have a lot of flexibility when configuring the panel. Figure 2-8: Configuring the KDE panel is easy. # Configuring the KDE Desktop After right-clicking an empty spot on the desktop, you can choose Desktop Settings from the pop-up menu. Doing so displays the configuration tool shown in Figure 2-9. You can configure such items as the background and special mouse controls to perform helpful functions on the desktop. Book II Chapter 2 The KDE Deskto Figure 2-9: You can change the desktop settings. For more thorough desktop configurations, choose Configure Desktop from the Main Menu to display the configuration options shown in Figure 2-10. You can set the screen size, adjust settings for multiple desktops, change the screen saver, and play around with desktop effects. The settings here are organized into categories, such as Common Appearance and Behavior, and Workspace Appearance and Behavior, as well as Network Connectivity, and Hardware. Click an item to view the subcategories for that item. Click one of the subcategory items to change it. After making any changes you want, click the Apply button to enact the change. If you don't like the result, you can often click Reset to go back to the original setting. Depending upon your distribution, you may also want to use downloadable programs such as SAX2 for desktop configuration. SAX2 is an open source program that simplifies configuration. Figure 2-10: More desktop configuration options. ## Chapter 3: Commanding the Shell #### In This Chapter - ✓ Opening a terminal window or a virtual console - **✓** Discovering the bash shell - Using Linux commands - ✓ Writing a shell script Sometimes things just don't work. What do you do if the GUI desktop stops responding to your mouse clicks? What if the GUI doesn't start at all? You can still tell your Linux system what to do, but you have to do it by typing commands into a text screen. In these situations, you work with the shell — the Linux command interpreter. This chapter introduces the bash shell, the default shell in most Linux distributions. After you figure out how to work with the shell, you may even begin to like the simplicity and power of the Linux commands. And then, even if you're a GUI aficionado, someday soon you may find yourself firing up a terminal window and making the system sing and dance with two- or three-letter commands strung together by strange punctuation characters. (Hey, I can dream, can't I?) ## Opening Terminal Windows and Virtual Consoles First things first. If you're working in a GUI desktop, such as GNOME or KDE, where do you type commands for the shell? Good question. The easiest way to get to the shell is to open a *terminal* (also called *console*) window. The GNOME and KDE GUIs in most distributions include an icon (or a Main Menu option) to open a terminal window. Click that icon or choose the menu option to get a terminal window. If you don't see such an icon in GNOME, choose Applications: Accessories: Terminal. Now you can type commands to your heart's content. If, for some reason, the GUI seems to be *hung* (you click and type but nothing happens), you can turn to the *virtual consoles*. (The *physical console* is the monitor-and-keyboard combination.) The idea of virtual consoles is to give you the ability to switch among several text consoles even though you have only one physical console. Whether you're running a GUI or not, you can then use different text consoles to type different commands. To get to the first virtual console from the GNOME or KDE desktop, press Ctrl+Alt+F1. Press Ctrl+Alt+F2 for the second virtual console, and so on. Each of these virtual consoles is a text screen where you can log in and type Linux commands to perform various tasks. When you're finished, type **exit** to log out. You can use up to six virtual consoles. In most distributions, the seventh one is used for the GUI desktop. To get back to the GUI desktop, press Ctrl+Alt+F7. ## Using the bash Shell If you've used MS-DOS, you may be familiar with COMMAND. COM, the DOS command interpreter. That program displays the infamous C:\> prompt. In Windows, you can see this prompt if you open a command window. (To open a command window in Microsoft Windows, choose Start Run, type command in the text box, and then click OK.) Linux comes with a command interpreter that resembles COMMAND. COM in DOS, but it can do a whole lot more. The Linux command interpreter is called a *shell*. The default shell in many Linux distributions is bash. When you open a terminal window or log in at a text console, the bash shell is what prompts you for commands. Then, when you type a command, the shell executes your command. Just as there are multiple GUIs (GNOME or KDE) for Linux, you have a choice of shells besides bash. For example, some people prefer the C shell. You can easily change your default shell by using the chsh command. In addition to the standard Linux commands, bash can execute any computer program. So you can type the name of an application (the name is usually more cryptic than what you see in GNOME or KDE menus) at the shell prompt, and the shell starts that application. ## Understanding the syntax of shell commands Because a shell interprets what you type, knowing how the shell processes the text you enter is important. All shell commands have the following general format. (Some commands have no options.) ``` command [option1] [option2] . . . [optionN] ``` Issuing such a command is a process commonly referred to as a *command line*. On a command line, you enter a command, followed by zero or more options (or *arguments*). These strings of options — the *command-line options* (or command-line arguments) — modify the way the command works so that you can get it to do specific tasks. The shell uses a blank space or a tab to distinguish between the command and options. This means you must use a space or a tab to separate the command from the options and the options from one another. If an option contains spaces, you put that option inside quotation marks. For example, to search for my name in the password file, I enter the following grep command (grep is used for searching for text in files): ``` grep "Emmett Dulaney" /etc/passwd ``` When grep prints the line with my name, it looks like this: ``` edulaney:x:1000:100:Emmett Dulaney:/home/edulaney:/bin/bash ``` If you create a user account with your username, type the grep command with your username as an argument to look for that username in the /etc/ passwd file. In the output from the grep command, you can see the name of the shell (/bin/bash) following the last colon (:). Because the bash shell is an executable file, it resides in the /bin directory; you must provide the full path to it. The number of command-line options and their format depend on the actual command. Typically, these options look like -x, where x is a single character. For example, you can use the -1 option with the 1s command. The command lists the contents of a directory, and the option provides additional details. Here is a result of typing 1s -1 in a user's home directory: ``` total 0 drwxr-xr-x 2 edulaney users 48 2014-09-08 21:11 bin drwx----- 2 edulaney users 320 2014-09-08 21:16 Desktop drwx----- 2 edulaney users 80 2014-09-08 21:11 Documents drwxr-xr-x 2 edulaney users 80 2014-09-08 21:11 public_html drwxr-xr-x 2 edulaney users 464 2014-09-17 18:21 sdump ``` If a command is too long to fit on a single line, you can press the backslash key (\) followed by Enter. Then continue typing the command on the next line. For example, type the following command. (Press Enter after each line.) ``` cat \ /etc/passwd ``` Book II Chapter 3 The cat command then displays the contents of the /etc/passwd file. You can *concatenate* (that is, string together) several shorter commands on a single line by separating the commands by semicolons (;). For example, the following command ``` cd; ls -1; pwd ``` changes the current directory to your home directory, lists the contents of that directory, and then shows the name of that directory. ## Combining shell commands You can combine simple shell commands to create a more sophisticated command. For example, suppose that you want to find out whether a device file named <code>sbpcd</code> resides in your system's <code>/dev</code> directory because some documentation says you need that device file for your CD-ROM drive. You can use the <code>ls /dev</code> command to get a directory listing of the <code>/dev</code> directory and then browse through it to see whether that listing contains <code>sbpcd</code>. Unfortunately, the /dev directory has a great many entries, so you may find it hard to find any item that has sbpcd in its name. You can, however, combine the ls command with grep and come up with a command line that does exactly what you want. Here's that command line: ``` ls /dev | grep sbpcd ``` The shell sends the output of the 1s command (the directory listing) to the grep command, which searches for the string sbpcd. That vertical bar (|) is known as a *pipe* because it acts as a conduit (think of a water pipe) between the two programs — the output of the first command is fed into the input of the second one. ## Controlling command input and output Most Linux commands have a common feature — they always read from the *standard input* (usually, the keyboard) and write to the *standard output* (usually, the screen). Error messages are sent to the *standard error* (usually to the screen as well). These three devices often are referred to as stdin, stdout, and stderr. You can make a command get its input from a file and then send its output to another file. Just so you know, the highfalutin term for this feature is *input* and output redirection or I/O redirection. Table 3-1 shows the syntax of common I/O redirection
commands, and the next few sections explain how to use some of these commands. | Table 3-1 Common Standard I/O Redirections | | | |--|---|--| | Task | Command Syntax | | | Send stdout to a file | command > file | | | Send stderr to file | command 2> file | | | Send stdout and stderr to file | command > file 2>&1 | | | Read stdin from a file | command < file | | | Read stdin from file.in and send stdout to file.out | <pre>command < file.in > file.out</pre> | | | Append stdout to the end of a file | command >> file | | | Append stderr to the end of a file | command 2>> file | | | Append stdout and stderr to the end of a file | command >> file 2>&1 | | | Read ${\tt stdin}$ from the keyboard until the character ${\tt c}$ | command < <c< td=""></c<> | | | Pipe stdout to command2 | command command2 | | | Pipe stdout and stderr to command2 | command 2>&1 command2 | | #### Book II Chapter 3 Commanding the Shell #### Getting command input from a file If you want a command to get its instructions by reading from a file, you can redirect the standard input to come from that file instead of from the keyboard. For example, type the following command: ``` sort < /etc/passwd</pre> ``` This command displays a sorted list of the lines in the /etc/passwd file. In this case, the less-than sign (<) redirects stdin so that the sort command reads its input from the /etc/passwd file. #### Saving command output in a file To save the output of a command in a file, redirect the standard output to a file. For example, type ${\bf cd}$ to change to your home directory, and then type the following command: ``` grep typedef /usr/include/* > typedef.out ``` This command searches through all files in the /usr/include directory for the occurrence of the text typedef — and then saves the output in a file called typedef.out. The greater-than sign (>) redirects stdout to a file. This command also illustrates another feature of bash: When you use an asterisk (*), bash replaces the asterisk with a list of all filenames in the specified directory. Thus /usr/include/* means all the files in the /usr/include directory. If you want to append a command's output to the end of an existing file instead of saving the output in a new file, use two greater-than signs (>>) like this: command >> filename Another interesting use of sending stdout to a file is the use of the cat command to quickly prepare small text files. For example, suppose that you want to create a new text file to store lines of text you type until you type **ZZ** and press Enter. Here is how you can accomplish that task: cat <<ZZ > input.txt After you type this command, you can keep typing lines and then type **ZZ** on a line when you are finished. Everything you type is saved in the file input.txt. #### Saving error messages in a file Sometimes you type a command, and it generates a lot of error messages that scroll by so fast you can't tell what's going on. One way to see all the error messages is to save them in a file so that you can see what the heck happened. You can do that by redirecting stderr to a file. For example, type the following command: find / -name COPYING -print 2> finderr This command looks through the file system for files named COPYING and saves all the error messages (if there are any) in the finderr file. The number 2 followed by the greater-than sign (2>) redirects stderr to a file. If you want to simply discard the error messages instead of saving them in a file, use /dev/null as the filename, like this: find / -name COPYING -print 2> /dev/null That /dev/null is a special file — often called the *bit bucket* and sometimes glorified as the *Great Bit Bucket in the Sky* — that simply discards whatever it receives. So now you know what they mean when you hear phrases, such as "Your mail probably ended up in the bit bucket." ## Typing less with automatic command completion Many commands take a filename as an argument. To view the contents of the /etc/modprobe.conf text file, for example, type the following command: cat /etc/modprobe.conf The cat command displays the /etc/modprobe.conf file. For any command that takes a filename as an argument, you can use a bash feature to avoid having to type the entire filename. All you have to type is enough characters to uniquely identify the file in its directory. To see an example, type **cat /etc/mod** but don't press Enter; press Tab instead. bash automatically completes the filename, so the command becomes cat /etc/modprobe.conf. Now press Enter to run the command. Book II Chapter 3 > Commanding the Shell Whenever you type a filename, press Tab after the first few characters of the filename. bash probably can complete the filename so that you don't have to type the entire name. If you don't enter enough characters to uniquely identify the file, bash beeps. Just type a few more characters and press Tab again. ## Going wild with asterisks and question marks You can avoid typing long filenames another way. (After all, making less work for users is why we use computers, isn't it?) This particular trick involves using the asterisk (*) and question mark (?). These special characters are *wildcards* because they match zero or more characters in a line of text. If you know MS-DOS, you may have used commands such as COPY *.* A: to copy all files from the current directory to the A: drive. bash accepts similar wildcards in filenames. As you expect, bash provides many more wildcard options than the MS-DOS command interpreter does. Of course, newer computers (particularly notebook computers and especially netbooks) don't have A and B drives anymore. That deprives an entire generation of the fun of trying to copy a large file onto floppy disks! You can use three types of wildcards in bash: - ◆ Asterisk (*): Matches zero or more characters in a filename. That means * denotes all files in a directory. - ◆ Question mark (?): Matches any single character. If you type test?, that matches any five-character text that begins with *test*. - ◆ Set of characters in brackets: Matches any single character from that set. The string [aB], for example, matches only files named a or B, The string [aB] *, though, matches any filename that starts with a or B. Wildcards are handy when you want to do something to many files. For example, to copy all the files from the /media/cdrom directory to the current directory, type the following: ``` cp /media/cdrom/* . ``` bash replaces the wildcard character * with the names of all the files in the /media/cdrom directory. The period at the end of the command represents the current directory. You can use the asterisk with other parts of a filename to select a more specific group of files. Suppose you want to use the grep command to search for the text typedef struct in all files of the /usr/include directory that meet the following criteria: - ♦ The filename starts with s - ♦ The filename ends with .h The wildcard specification s*.h denotes all filenames that meet these criteria. Thus you can perform the search with the following command: ``` grep "typedef struct" /usr/include/s*.h ``` The string contains a space that you want the grep command to find, so you have to enclose that string in quotation marks. That way, bash doesn't try to interpret each word in that text as a separate command-line argument. The question mark (?) matches a single character. Suppose you have four files — image1.pcx, image2.pcx, image3.pcx, and image4.pcx — in the current directory. To copy these files to the /media/floppy directory, use the following command: ``` cp image?.pcx /media/floppy ``` bash replaces the single question mark with any single character and copies the four files to /media. The third wildcard format — [. . .] — matches a single character from a specific set of characters enclosed in square brackets. You may want to combine this format with other wildcards to narrow the matching filenames to a smaller set. To see a list of all filenames in the /etc/X11/xdm directory that start with x or X, type the following command: ``` ls /etc/X11/xdm/[xX] * ``` #### Repeating previously typed commands To make repeating long commands easy for you, bash stores up to 500 old commands as part of a *command history* (basically just a list of old commands). To see the command history, type **history**. bash displays a numbered list of the old commands, including those that you entered during previous logins. If the command list is too long, you can limit the number of old commands that you want to see. For example, to see only the 10 most recent commands, type this command: history 10 To repeat a command from the list that the history command shows, simply type an exclamation point (!), followed by that command's number. To repeat command number 3, type !3. You can repeat a command without knowing its command number. Suppose you typed more /usr/lib/X11/xdm/xdm-config a few minutes ago and now you want to look at that file again. To repeat the previous more command, type the following: !more Often you may want to repeat the last command that you just typed, perhaps with a slight change. For example, you may have displayed the contents of the directory by using the ls -1 command. To repeat that command, type two exclamation points as follows: 11 Sometimes you may want to repeat the previous command but add extra arguments to it. Suppose that ls -l shows too many files. Simply repeat that command but pipe the output through the more command as follows: ``` !! | more ``` bash replaces the two exclamation points with the previous command and then appends \mid more to that command. Here's the easiest way to recall previous commands: Just press the up-arrow key, and bash keeps going backward through the history of commands you previously typed. To move forward in the command history, press the downarrow key. Book II Chapter 3
Discovering and Using Linux Commands You type Linux commands at the shell prompt. By *Linux commands*, I mean some of the commands that the bash shell understands as well as the command-line utilities that come with Linux. In this section, I introduce you to a few major categories of Linux commands. I can't cover every single Linux command in this chapter, but I want to give you a feel for the breadth of the commands by showing you common Linux commands. Table 3-2 lists common Linux commands by category. Before you start memorizing any Linux commands, browse this table. | Table 3-2 | Essential Linux Commands | | |---------------------|--|--| | Command Name | Action | | | Help and Abbreviati | ons | | | apropos | Find online manual pages for a specified keyword. | | | info | Display online help information about a specified command. | | | man | Display online help information. | | | whatis | Search for complete words only and find the online manual pages. | | | alias | Define an abbreviation for a long command. | | | type | Show the type and location of a command. | | | unalias | Delete an abbreviation defined using alias. | | | Managing Files and | Directories | | | cd | Change the current directory. | | | chmod | Change file permissions. | | | chown | Change the file owner and group. | | | ср | Copy files. | | | ln | Create symbolic links to files and directories. | | | ls | Display the contents of a directory. | | | mkdir | Create a directory. | | | mv | Rename a file and move the file from one directory to another. | | | rm | Delete files. | | | rmdir | Delete directories. | | | pwd | Display the current directory. | | | touch | Update a file's timestamp. | | | Command Name | Action | | |------------------|---|--| | Finding Files | | | | find | Find files based on specified criteria, such as name and size. | | | locate | Find files using a periodically updated filename database. (The database is created by the updatedb program.) | | | whereis | Find files based in the typical directories where <i>executable</i> (also known as <i>binary</i>) files are located. | | | which | Find files in the directories listed in the PATH environment variable. | | | Processing Files | | | | cat | Display a file on standard output (can be used to concatenate several files into one big file). | | | cut | Extract specified sections from each line of text in a file. | | | dd | Copy blocks of data from one file to another (used to copy data from devices). | | | diff | Compare two text files and find any differences. | | | expand | Convert all tabs to spaces. | | | file | Display the type of data in a file. | | | fold | Wrap each line of text to fit a specified width. | | | grep | Search for regular expressions in a text file. | | | less | Display a text file one page at a time (go backward by pressing b). | | | lpr | Print files. | | | more | Display a text file, one page at a time (goes forward only). | | | nl | Number all nonblank lines in a text file and print the lines to standard output. | | | paste | Concatenate corresponding lines from several files. | | | patch | Update a text file using the differences between the original and revised copy of the file. | | | sed | Copy a file to standard output while applying specified editing commands. | | | sort | Sort lines in a text file. | | | split | Break up a file into several smaller files with specified size. | | | tac | Reverse a file (last line first and so on). | | | tail | Display the last few lines of a file. | | | tr | Substitute one group of characters for another throughout a file. | | | uniq | Eliminate duplicate lines from a text file. | | Book II Chapter 3 | Command Name | Action | | |--------------------|---|--| | WC | Count the number of lines, words, and characters in a text file. | | | zcat | Display a compressed file (after decompressing). | | | zless | Display a compressed file one page at a time (go backward by pressing b). | | | zmore | Display a compressed file one page at a time. | | | Archiving and Comp | ressing Files | | | compress | Compress files. | | | cpio | Copy files to and from an archive. | | | gunzip | Decompress files compressed with GNU Zip (gzip). | | | gzip | Compress files using GNU Zip. | | | tar | Create an archive of files in one or more directories (originally meant for archiving on tape). | | | uncompress | Decompress files compressed with compress. | | | Managing Files | | | | bg | Run an interrupted process in the background. | | | fg | Run a process in the foreground. | | | free | Display the amount of free and used memory in the system | | | halt | Shut down Linux and halt the computer. | | | kill | Send a signal to a process (usually used to terminate a process). | | | ldd | Display the shared libraries needed to run a program. | | | nice | Run a process with a lower priority (referred to as nice mode). | | | ps | Display a list of currently running processes. | | | printenv | Display the current environment variables. | | | pstree | Show parent-child process relationships. | | | reboot | Stop Linux and then restart the computer. | | | shutdown | Shut down Linux. | | | top | Display a list of most processor- and memory-intensive processes. | | | uname | Display information about the system and the Linux kernel. | | | Managing Users | | | | chsh | Change the shell (command interpreter). | | | groups | Print the list of groups that include a specified user. | | | Command Name | Action | | |---------------------|--|--| | id | Display the user and group ID for a specified username. | | | passwd | Change the password. | | | su | Start a new shell as another user (the other user is assumed to be root when the command is invoked without any argument). | | | Managing the File S | ystem | | | df | Summarize free and available space in all mounted storage devices. | | | du | Display disk usage information. | | | fdformat | Format a floppy disk. | | | fdisk | Partition a hard drive. | | | fsck | Check and repair a file system. | | | mkfs | Create a new file system. | | | mknod | Create a device file. | | | mkswap | Create a swap space for Linux in a file or a hard drive partition. | | | mount | Mount a device (for example, the CD-ROM) on a directory in the file system. | | | swapoff | Deactivate a swap space. | | | swapon | Activate a swap space. | | | sync | Write <i>buffered</i> (saved in memory) data to files. | | | tty | Display the device name for the current terminal. | | | umount | Unmount a device from the file system. | | | Dates and Times | | | | cal | Display a calendar for a specified month or year. | | | date | Display the current date and time or set a new date and time. | | ## Becoming root (superuser) When you want to do anything that requires a high privilege level (for example, administering your system), you have to become root. Normally, you log in as a regular user with your everyday username. When you need the privileges of the superuser, though, use the following command to become root: Book II Chapter 3 That's su followed by a space and the minus sign (or hyphen). The shell then prompts you for the root password. Type the password and press Enter. After you've finished with whatever you want to do as root (and you have the privilege to do anything as root), type **exit** to return to your normal username. Instead of becoming root by using the su - command, you can also type **sudo** followed by the command that you want to run as root. In Ubuntu, you must use the sudo command because you don't get to set up a root user when you install Ubuntu. If you're listed as an authorized user in the /etc/sudoers file, sudo executes the command as if you were logged in as root. Type **man sudoers** to read more about the /etc/sudoers file. ## Managing processes Every time the shell executes a command that you type, it starts a process. The shell itself is a process, as are any scripts or programs that the shell runs. Use the ps ax command to see a list of processes. When you type **ps ax**, bash shows you the current set of processes. Here are a few lines of output when I type **ps ax -cols 132**. (I included the -cols 132 option to ensure that you can see each command in its entirety.) ``` PID TTY STAT TIME COMMAND 1 ? S 0:01 init [5] 2 ? SN 0:00 [ksoftirgd/0] 3 ? S< 0:00 [events/0] 4 ? S< 0:00 [khelper] 9 ? S< 0:00 [kthread] 19 ? S< 0:00 [kacpid] 75 ? S< 0:00 [kblockd/0] 115 ? S 0:00 [pdflush] 116 ? S 0:01 [pdflush] 118 ? S< 0:00 [aio/0] 117 ? S 0:00 [kswapd0] 711 ? S 0:00 [kseriod] 1075 ? S< 0:00 [reiserfs/0] 2086 ? S 0:00 [kjournald] 2239 ? S<s 0:00 /sbin/udevd -d . . . lines deleted . . . 6374 ? S 1:51 /usr/X11R6/bin/X :0 -audit 0 -auth /var/lib/gdm/:0.Xauth -nolisten tcp vt7 6460 ? Ss 0:02 /opt/gnome/bin/gdmgreeter 6671 ? Ss 0:00 sshd: edulaney [priv] 6675 ? S 0:00 sshd: edulaney@pts/0 6676 pts/0 Ss 0:00 -bash 6712 pts/0 S 0:00 vsftpd 14702 ? S 0:00 pickup -l -t fifo -u 14752 pts/0 R+ 0:00 ps ax --cols 132 ``` In this listing, the first column has the heading PID and shows a number for each process. PID stands for *process ID* (identification), which is a sequential number assigned by the Linux kernel. If you look through the output of the ps ax command, you see that the init command is the first process and has a PID of 1. That's why init is referred to as the *mother of all processes*. The COMMAND column shows the command that created each process, and the TIME column shows the cumulative CPU time used by the process. The STAT column shows the state of a process — S means the process is sleeping, and R
means it's running. The symbols following the status letter have further meanings; for example < indicates a high-priority process, and + means that the process is running in the foreground. The TTY column shows the terminal, if any, associated with the process. The process ID, or process number, is useful when you have to forcibly stop an errant process. Look at the output of the ps $\,$ ax command and note the PID of the offending process. Then, use the kill command with that process number to stop the process. For example, to stop process number 8550, start by typing the following command: kill 8550 If the process doesn't stop after five seconds, repeat the command. The next step in stopping a stubborn process is to type **kill -INT** *pid*, where *pid* is the process number. If that doesn't work, try the following command as a last resort: kill -9 8550 The -9 option means send signal number 9 to the process. Signal number 9 is the KILL signal, which should cause the process to exit. You could also type this command as **kill-KILL** *pid*, where *pid* is the process ID. ## Working with date and time You can use the date command to display the current date and time or set a new date and time. Type **date** at the shell prompt and you get a result similar to the following: Fri Mar 14 15:10:07 EST 2014 As you can see, issuing the date command alone displays the current date and time. To set the date, log in as root and then type **date** followed by the date and time in the MMDDhhmmYYYY format, where each character is a digit. For example, to set the date and time to December 31, 2014 and 9:30 p.m., you type date 123121302014 The MMDDhhmmYYYYY date and time format is similar to the 24-hour military clock and has the following meaning: - ♦ MM is a two-digit number for the month (01 through 12). - ◆ DD is a two-digit number for the day of the month (01 through 31). Book II Chapter 3 - ♦ hh is a two-digit hour in 24-hour format (00 is midnight and 23 is 11 p.m.). - ♦ mm is a two-digit number for the minute (00 through 59). - ◆ YYYY is the four-digit year (such as 2014). The other interesting date-related command is cal. If you type **cal** without any options, it prints a calendar for the current month. If you type **cal** followed by a number, cal treats the number as the year and prints the calendar for that year. To view the calendar for a specific month in a specific year, provide the month number (1 = January, 2 = February, and so on) followed by the year. Thus, type **cal 6 2014** and you get the calendar for June 2014, as follows: ``` June 2014 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ``` ## Processing files You can search through a text file with grep and view a text file, a screen at a time, with more. For example, to search for my username in the /etc/passwd file, I use ``` grep edulancy /etc/passwd ``` To view the /etc/inittab file a screen at a time, I type ``` more /etc/inittab ``` As each screen pauses, I press the spacebar to go to the next page. Many more Linux commands work on files — mostly on text files, but some commands also work on any file. The sections that follow describe a few of the file-processing tools. #### Counting words and lines in a text file I am always curious about the size of files. For text files, the number of characters is basically the size of the file in bytes (because each character takes up a byte of storage space). What about words and the number of lines, though? The Linux wc command comes to the rescue. The wc command displays the total number of lines, words, and characters in a text file. For example, type wc /etc/inittab and you see output similar to the following: ``` 97 395 2926 /etc/inittab ``` In this case, we reports that 97 lines, 395 words, and 2,926 characters are in the /etc/inittab file. If you simply want to see the number of lines in a file, use the -1 option and type wc-l/etc/inittab. The resulting output should be similar to the following: ``` 97 /etc/inittab ``` As you can see, with the -1 option, wc simply displays the line count. If you don't specify a filename, the wc command expects input from the standard input. You can use the pipe feature (|) of the shell to feed the output of another command to wc, which can be handy sometimes. Suppose you want a rough count of the processes running on your system. You can get a list of all processes with the ps ax command, but instead of counting lines manually, just pipe the output of ps to wc and you get a rough count automatically: ``` ps ax | wc -1 86 ``` Here the ps command produces 86 lines of output. Because the first line simply shows the headings for the tabular columns, you can estimate that about 85 processes are running on your system. (This count probably includes the processes used to run the ps and wc commands as well.) #### Sorting text files You can sort the lines in a text file by using the sort command. To see how the sort command works, first type **more /etc/passwd** to see the current contents of the /etc/passwd file. Now type **sort /etc/passwd** to see the lines sorted alphabetically. If you want to sort a file and save the sorted version in another file, you have to use the bash shell's output redirection feature, like this: ``` sort /etc/passwd > ~/sorted.text ``` This command sorts the lines in the /etc/passwd file and saves the output in a file named sorted.text in your home directory. #### Substituting or deleting characters from a file Another interesting command is tr, which substitutes one group of characters for another (or deletes a selected character) throughout a file. Suppose that you have to occasionally use MS-DOS text files on your Linux system. Although you may expect to use a text file on any system without any problems, you find one catch: DOS uses a carriage return followed by a line feed to mark the end of each line whereas Linux uses only a line feed. Book II Chapter 3 On your Linux system, you can get rid of the extra carriage returns in the DOS text file by using the tr command with the -d option. Essentially, to convert the DOS text file named filename.dos to a Linux text file named filename.linux, type the following: ``` tr -d '\015' < filename.dos > filename.linux ``` In this command, '\015' denotes the code for the carriage-return character in octal notation. #### Splitting a file into several smaller files The split command is handy for those times when you want to copy a file but the file is too large to send as one e-mail attachment. You can then use the split command to break up the file into multiple smaller files. By default, split puts 1,000 lines into each file. The new, split files are named by groups of letters such as aa, ab, ac, and so on. You can specify a prefix for the filenames. For example, to split a large file called hugefile. tar into smaller files, use split as follows: ``` split -b 1440k hugefile.tar part. ``` This command splits the hugefile.tar file into 1440K chunks. The command creates files named part.aa, part.ab, part.ac, and so on. To combine the split files back into a single file, use the cat command as follows: ``` cat part.?? > hugefile.tar ``` In this case, the two question marks (??) match any two-character extension in the filename. In other words, the filename part.?? matches all filenames such as part.12, part.aa, part.ab, and part.2b. ## Writing Shell Scripts If you've ever used MS-DOS, you may remember MS-DOS *batch files*, which are text files with MS-DOS commands. Similarly, *shell scripts* are also text files with a bunch of shell commands. If you aren't a programmer, you may feel apprehensive about programming, but shell programming can be as simple as storing a few commands in a file. Right now, you might not be up to writing complex shell scripts, but you can certainly try out a simple shell script. To try your hand at a little shell programming, type the following text at the shell prompt exactly as shown and then press Ctrl+D when you're finished: ``` cd cat > simple #!/bin/sh echo "This script's name is: $0" echo Argument 1: $1 echo Argument 2: $2 ``` Press Ctrl+D. The cd command changes the current directory to your home directory. Then the cat command displays the next line and any other lines you type before pressing Ctrl+D. In this case, I use > simple to send the output to a file named simple. After you press Ctrl+D, the cat command ends, and you see the shell prompt again. You created a file named simple that contains the following shell script: ``` #!/bin/sh echo "This script's name is: $0" echo Argument 1: $1 echo Argument 2: $2 ``` The first line causes Linux to run the bash shell program (of the name /bin/bash). The shell then reads the rest of the lines in the script. Just as most Linux commands accept command-line options, a bash script also accepts command-line options. Inside the script, you can refer to the options as \$1,\$2, and so on. The special name \$0 refers to the name of the script itself. To run this shell script, first you have to make the file executable (that is, turn it into a program) with the following command: ``` chmod +x simple ``` Now type ./simple one two to run the script, and it displays the following output: ``` This script's name is: ./simple Argument 1: one Argument 2: two ``` The $\,$. / prefix to the script's name indicates that the ${\tt simple}$ file is in the current directory. This script simply prints the script's name and the first two command-line options that the user types after the script's name. Book II Chapter 3 Next, try running the script with a few arguments, as follows: ``` ./simple "This is one argument" second-argument third This script's name is: ./simple Argument 1: This is one argument Argument 2: second-argument ``` The shell treats the entire string in the double quotation marks as a single argument. Otherwise, the shell uses spaces as separators between arguments on the command
line. Most useful shell scripts are more complicated than this simple script, but this easy exercise gives you a rough idea of how to write shell scripts. Place Linux commands in a file and use the chmod command to make the file executable. Voilà! You created a shell script! # Chapter 4: Navigating the Linux File System #### In This Chapter - **✓** Finding out about the Linux file system - **✓** Navigating the system with Linux commands - Understanding file permissions - **✓** Manipulating files and directories with Linux commands o use files and directories well, you need to understand the concept of a hierarchical file system. Even if you use the GUI file managers (addressed in the next chapter) to access files and folders (folders are also called *directories*), you can benefit from a lay of the land of the file system. This chapter introduces the Linux file system and shows you how to work with files and directories using several Linux commands. ## Understanding the Linux File System Like any other operating system, Linux organizes information in files and directories. A *directory* is a special file that can contain other files and directories. Because a directory can contain other directories, this method of organizing files gives rise to a hierarchical structure. This hierarchical organization of files is the *file system*. The Linux file system gives you a unified view of all storage on your PC. The file system has a single root directory, indicated by a forward slash (/). Within the root directory is a hierarchy of files and directories. Parts of the file system can reside in different physical media, such as a hard drive, an external drive, and a CD-ROM. Figure 4-1 illustrates the concept of the Linux file system (which is the same in any Linux system) and how it spans multiple physical devices. Figure 4-1: The Linux file system provides a unified view of storage that may span multiple storage devices. If you're familiar with other operating systems such as Windows, you may find something missing in the Linux file system: You don't find drive letters in Linux. All disk drives and CD-ROM drives are part of a single file system. In Linux, you can have long filenames (up to 256 characters), and filenames are case-sensitive. Often these filenames have multiple extensions, such as sample.tar.Z. Unix filenames can take many forms, such as the following: index.html, Makefile, binutils-2.15.92.0.2-5.i386.rpm, vsftpd_2.0.3-1 i386.deb, .bash profile, and httpd src.tar.gz. To locate a file, you need more than just the filename. You also need information about the directory hierarchy. The extended filename, showing the full hierarchy of directories leading to the file, is the *pathname*. As the name implies, it's the path to the file through the maze of the file system. Figure 4-2 shows a typical pathname for a file in Linux. First-level Second-level Third-level Filename Figure 4-2: directory directory directory The path for the file shows the index.html edulaney public html home sequence of directories leading up Root Name Extension to the file. Directory separator directory As Figure 4-2 shows, the pathname has the following parts: - **♦** The root directory, indicated by a forward slash (/) character. - **♦ The directory hierarchy,** with each directory name separated from the previous one by a forward slash (/) character. A / appears after the last directory name. - ◆ The filename, with a name and one or more optional extensions. (A period appears before each extension.) The Linux file system has a well-defined set of top-level directories, and some of these directories have specific purposes. Finding your way around the file system is easier if you know the purpose of these directories. You also become adept at guessing where to look for specific types of files when you face a new situation. Table 4-1 briefly describes the top-level directories in the Linux file system. | Top-Level Directories in the Linux File System | | |---|--| | Contains | | | Base of the file system. All files and directories are contained logically in the $root$, or $/$, directory, regardless of their physical locations. | | | Executable programs that are part of the Linux operating system. Many Linux commands, such as cat, cp, ls, more, and tar, are located in /bin. | | | Linux kernel and other files that the LILO and GRUB boot managers need. (The kernel and other files can be anywhere, but placing them in the /boot directory is customary.) | | | Special files that represent devices attached to the system. | | | Most system configuration files and the initialization scripts (in the $/\text{etc/rc}$. d subdirectory). | | | Home directories of all users. User edulaney's home directory, for example, is /home/edulaney. | | | Library files for all programs stored in /sbin and /bin directories (including the loadable driver modules) needed to start Linux. | | | Lost files. Every disk partition has a lost+found directory. | | | | | Book II Chapter 4 Navigating the Linux File System | Directory | Contains | | |-----------|--|--| | /media | The /media/cdrom or /media/cdrom0 directory is for mounting the CD/DVD-ROM drive. If you have a CD/DVD recorder, you find a /media/cdrecorder directory instead of /media/cdrom and may also find /media/DVD. Used for mounting file systems on removable media, such as CD/DVD-ROM drives, flash drives, external drives, floppy disks, and Zip drives. If you have a very old machine that still has a floppy drive on it, then the /media/floppy directory will also exist for mounting floppy disks. | | | /mnt | Temporarily mounted file systems. | | | /opt | Storage for large application software packages. For example, some distributions install the LibreOffice.org Office suite in the /opt directory. | | | /proc | Various information about the processes running in the Linu system. | | | /root | Home directory for the root user. | | | /sbin | Executable files representing commands typically used for system administration tasks and used by the root user. Commands such as halt and shutdown reside in the /sbin directory. | | | /srv | Data for services (such as web and FTP) offered by this system. | | | /sys | Information about the devices, as seen by the Linux kernel. | | | /tmp | Temporary directory that any user can use as a <i>scratch</i> directory, meaning that the contents of this directory are considered unimportant and usually are deleted every time the system boots. | | | /usr | Subdirectories for many important programs, such as the X Window System (in the /usr/X11R6 directory) and the online manual. (Table 4-2 shows some of the standard subdirectories in /usr.) | | | /var | Various system files (such as logs), as well as directories for holding other information, such as files for the web server and anonymous FTP server. | | The /usr and /var directories also contain a number of standard subdirectories. Table 4-2 lists the important subdirectories in /usr. Table 4-3 shows a similar breakdown for the /var directory. | Table 4-2 | Important /usr Subdirectories | | |--------------------|---|--| | Subdirectory | Description | | | /usr/bin | Executable files for many more Linux commands, including utility programs that are commonly available in Linux but aren't part of the core Linux operating system. | | | /usr/games | Some old Linux games. | | | /usr/
include | Header files (filenames ending in . h) for the C and C++ programming languages and the X11 header files in the /usr/include/X11 directory and the Linux kernel header files in the /usr/include/linux directory. | | | /usr/lib | Libraries for C and C++ programming languages and many other libraries, such as database libraries and graphical toolkit libraries. | | | /usr/local | Local files. The /usr/local/bin directory, for example, is supposed to be the location for any executable program developed on your system. | | | /usr/sbin | Many administrative commands, such as commands for e-mail and networking. | | | /usr/share | Shared data, such as default configuration files and images for many applications. For example, /usr/share/gnome contains various shared files for the GNOME desktop, and /usr/share/doc has the documentation files for many Linux applications (such as the bash shell, the Sawfish window manager, and The GIMP image processing program). | | | /usr/share/
man | Online manual (which you can read by using the man command). | | | /usr/src | Source code for the Linux kernel (the core operating system). | | | Important /var Subdirectories | | |---|--| | Contains | | | Storage area for cached data for applications. | | | Information relating to the current state of applications. | | | Locked files to ensure that a resource is used by one application only. | | | | | Book II Chapter 4 > Navigating the Linux File System (continued) | Table 4-3 (continued) | | | |-----------------------
---|--| | Subdirectory | Contains | | | /var/log | Log files organized into subdirectories. The syslogd server stores its log files in /var/log, with the exact content of the files depending on the syslogd configuration file /etc/syslog.conf. For example, /var/log/messages is the main system log file; /var/log/secure contains log messages from secure services (such as sshd and xinetd); and /var/log/maillog contains the log of mail messages. | | | /var/mail | User mailbox files. | | | /var/opt | Variable data for packages stored in /opt directory. | | | /var/run | Data describing the system since the time it was booted. | | | /var/spool | Data that's waiting for some kind of processing. | | | /var/tmp | Temporary files preserved between system reboots. | | | /var/yp | Network Information Service (NIS) database files. | | ## Navigating the File System with Linux Commands Although GUI file managers such as Nautilus (in GNOME) or Konqueror (in KDE) are easy to use, you can use them only if you have a working GUI desktop. Sometimes you may not have a graphical environment to run a graphical file manager. For example, you may be logged in through a text terminal, or X may not be working on your system. In those situations, you have to rely on Linux commands to work with files and directories. You can always use Linux commands, even in the graphical environment — all you have to do is open a terminal window and type the Linux commands. In this section, I briefly describe some Linux commands for moving around the Linux file system. ## Commands for directory navigation In Linux, when you log in as root, your home directory is /root. For other users, the home directory is usually in the /home directory. My home directory. tory (when I log in as edulancy) is /home/edulancy. This information is stored in the /etc/passwd file. By default, only you have permission to save files in your home directory, and only you can create subdirectories in your home directory to further organize your files. Linux supports the concept of a *current* directory, which is the directory on which all file and directory commands operate. After you log in, for example, your current directory is the home directory. To see the current directory, type the pwd command. To change the current directory, use the cd command. To change the current directory to /usr/lib, type the following: cd /usr/lib Then, to change the directory to the cups subdirectory in /usr/lib, type this command: cd cups Now, if you use the pwd command, that command shows /usr/lib/cups as the current directory. These two examples show that you can refer to a directory's name in two ways: - ♦ Absolute pathname: An example is /usr/lib, which is an exact directory in the directory tree. Think of the absolute pathname as the complete mailing address for a package that the postal service will deliver to your next-door neighbor. - ◆ Relative directory name: An example is cups, which represents the cups subdirectory of the current directory, whatever that may be. Think of the relative directory name as giving the postal carrier directions from your house to the one next door so the carrier can deliver the package. If I type cd cups in /usr/lib, the current directory changes to /usr/lib/cups. However, if I type the same command in /home/edulaney, the shell tries to change the current directory to /home/edulaney/cups. Use the cd command without any arguments to change the current directory back to your home directory. No matter where you are, typing cd at the shell prompt brings you back home! The tilde character (\sim) refers to your home directory. Thus you can change the current directory to your home directory by using the command cd \sim . You can refer to another user's home directory by appending that user's name to the tilde. Thus cd \sim superman changes the current directory to the home directory of superman. Wait, there's more. A single dot (.) and two dots (. .) — often cleverly referred to as dot-dot — also have special meanings. A single dot (.) indicates the current directory, whereas two dots (. .) indicate the parent directory. For example, if the current directory is /usr/share, you go one level up to /usr by typing the following: Book II Chapter 4 Navigating the Linux File System ### Commands for directory listings and permissions You can get a directory listing by using the 1s command. By default, the 1s command — without options — displays the contents of the current directory in a compact, multicolumn format. For example, type the next two commands to see the contents of the /etc/X11 directory: ``` cd /etc/X11 ls ``` The output looks like this. (On the console, you see some items in different colors.) ``` X Xsession.d cursors rgb.txt xkb XF86Config-4 Xsession.options default-display-manager rstart xserver Xresources Xwrapper.config fonts sysconfig xsm Xsession app-defaults qdm xinit ``` From this listing (without the colors), you can't tell whether an entry is a file or a directory. To tell the directories and files apart, use the -F option with 1s, like this: ``` ls -F ``` This time the output gives you some more clues about the file types: ``` X@ Xsession.d/ cursors/ rqb.txt xkb/ XF86Config-4 Xsession.options default-display-manager rstart/ xserver/ Xresources/ Xwrapper.confiq fonts/ sysconfiq/ xsm/ Xsession* app-defaults/ gdm@ xinit/ ``` The output from ls -F shows the directory names with a slash (/) appended to them. Plain filenames appear as is. The at sign (a) appended to a filename (for example, notice the file named X) indicates that this file is a link to another file. (In other words, this filename simply refers to another file; it's a shortcut.) An asterisk (*) is appended to executable files. (Xsession, for example, is an executable file.) The shell can run any executable file. You can see even more detailed information about the files and directories with the -1 option: ``` ls -1 ``` For the /etc/X11 directory, a typical output from 1s -1 looks like the following: ``` total 84 lrwxrwxrwx 1 root root 20 Jul 15 20:32 X -> /usr/bin/X11/XFree86 -rw-r--r-- 1 root root 2878 Jul 16 14:50 XF86Config-4 drwxr-xr-x 2 root root 4096 Jul 15 20:32 Xresources -rwxr-xr-x 1 root root 3456 Jun 1 01:59 Xsession drwxr-xr-x 2 root root 4096 Jul 15 20:34 Xsession.d ``` ``` -rw-r--r-- 1 root root 217 Jun 1 01:59 Xsession.options -rw----- 1 root root 771 Jul 15 20:32 Xwrapper.config drwxr-xr-x 2 root root 4096 Jul 15 20:35 app-defaults . . . lines deleted . . . ``` This listing shows considerable information about every directory entry—each of which can be a file or another directory. Looking at a line from the right column to the left, you see that the rightmost column shows the name of the directory entry. The date and time before the name show when the last modifications to that file were made. To the left of the date and time is the size of the file in bytes. The file's group and owner appear to the left of the column that shows the file size. The next number to the left indicates the number of links to the file. (A *link* is like a shortcut in Windows.) Finally, the leftmost column shows the file's permission settings, which determine who can read, write, or execute the file. The first letter has a special meaning, as the following list shows: - ◆ 1: The file is a *symbolic link* to another file. In other words, it's a shortcut to something else. - ♦ d: The file is a directory. It will appear as a folder in a GUI. - → (hyphen): The file is normal. By normal, I mean that it isn't a directory, a link, or anything else odd. Most of the items on your system are just normal files. - ♦ b: The file represents a block device, such as a disk drive. - ◆ c: The file represents a character device, such as a serial port or a terminal. After that first letter, the leftmost column shows a sequence of nine characters, which appear as rwxrwxrwx when each letter is present. Each letter indicates a specific permission. A hyphen (-) in place of a letter indicates no permission for a specific operation on the file. Think of these nine letters as three groups of three letters (rwx), interpreted as follows: ◆ Leftmost rwx group: Controls the read, write, and execute permission of the file's owner. In other words, if you see rwx in this position, the file's owner can read (r), write (w), and execute (x) the file. A hyphen in the place of a letter indicates no permission. Thus the string rw- means the owner has read and write permission but not execute permission. Although executable programs (including shell programs) typically have execute permission, directories treat execute permission as equivalent to use permission: A user must have execute permission on a directory before he or she can open and read the contents of the directory. Book II Chapter 4 Navigating the Linux File System - ◆ Middle rwx group: Controls the read, write, and execute permission of any user belonging to that file's group. - Rightmost rwx group: Controls the read, write, and execute permission of all other users (collectively thought of as the world). Thus, a file with the permission setting rwx---- is accessible only to the file's owner, whereas the permission setting rwxr--r- makes the file readable by the world. An interesting feature of the 1s command is that it doesn't list any file whose name begins with a period. To see these files, you must use the 1s command with the -a option, as follows: ls -a Try this command in your home directory and then compare the result with what you see when you don't use the -a option: - 1.
Type cd to change to your home directory. - 2. Type ls -F to see the files and directories in your home directory. - 3. Type ls -aF to see everything, including hidden files. Most Linux commands take single-character options, each with a hyphen as a prefix. When you want to use several options, type a hyphen and *concatenate* (string together) the option letters, one after another. Thus ls -alis equivalent to ls -a -l as well as ls -l -a. ## Commands for changing permissions and ownerships You may need to change a file's permission settings to protect it from others. Use the chmod command to change the permission settings of a file or a directory. To use chmod effectively, you have to specify the permission settings. A good way is to concatenate letters from the columns of Table 4-4 in the order shown (Who/Action/Permission). | Table 4-4 | Letter Codes for File Permissions | | |------------|-----------------------------------|-------------| | Who | Action | Permission | | u (user) | + (add) | r (read) | | g (group) | – (remove) | w (write) | | o (others) | = (assign) | x (execute) | | a (all) | s (set user ID) | | You use only the single character from each column — the text in parentheses is for explanation only. For example, to give everyone read access to all files in a directory, pick a (for all) from the first column, + (for add) from the second column, and r (for read) from the third column to come up with the permission setting a+r. Then use the set of options with chmod, like this: chmod a+r *. On the other hand, to permit everyone to execute one specific file, type chmod a+x filename Suppose you have a file named mystuff that you want to protect. You can make it accessible to no one but you if you type the following commands, in this order: chmod a-rwx mystuff chmod u+rw mystuff The first command turns off all permissions for everyone, and the second command turns on the read and write permissions for the owner (you). Type <code>ls -l</code> to verify that the change took place. (You see a permission setting of <code>-rw-----</code>.) Sometimes you have to change a file's user or group ownership for everything to work correctly. For example, suppose you're instructed (by a manual, what else?) to create a directory named cups and give it the ownership of user ID lp and group ID sys. How do you do it? Well, you can log in as root and create the cups directory with the command mkdir: mkdir cups To change the owner, use the chown command. For example, to change the ownership of the cups directory to user ID 1p and group ID sys, type chown lp.sys cups ## Commands for working with files To copy files from one directory to another, use the \mathtt{cp} command. If you want to copy a file to the current directory but retain the original name, use a period (.) as the second argument of the \mathtt{cp} command. Thus the following Book II Chapter 4 Navigating the Linux File System command copies the Xresources file from the /etc/X11 directory to the current directory (denoted by a single period): cp /etc/X11/Xresources . The cp command makes a new copy of a file and leaves the original intact. If you want to copy the entire contents of a directory — including all subdirectories and their contents — to another directory, use the command cp -ar sourcedir destdir. (This command copies everything in the sourcedir directory to destdir.) For example, to copy all files from the /etc/X11 directory to the current directory, type the following command: cp -ar /etc/X11 . To move a file to a new location, use the mv command. The original copy is gone, and a new copy appears at the destination. You can use mv to rename a file. If you want to change the name of today.list to old.list, use the mv command, as follows: mv today.list old.list On the other hand, if you want to move the today.list file to a subdirectory named saved, use this command: mv today.list saved An interesting feature of mv is that you can use it to move entire directories (with all their subdirectories and files) to a new location. If you have a directory named data that contains many files and subdirectories, you can move that entire directory structure to old_data by using the following command: mv data old data To delete files, use the ${\tt rm}$ command. For example, to delete a file named old.list, type the following command: rm old.list Be careful with the rm command — especially when you log in as root. You can inadvertently delete important files with rm. ## Commands for working with directories To organize files in your home directory, you have to create new directories. Use the mkdir command to create a directory. For example, to create a directory named images in the current directory, type the following: mkdir images After you create the directory, you can use the cd images command to change to that directory. You can create an entire directory tree by using the -p option with the mkdir command. For example, suppose your system has a /usr/src directory and you want to create the directory tree /usr/src/book/java/examples/applets. To create this directory hierarchy, type the following command: mkdir -p /usr/src/book/java/examples/applets When you no longer need a directory, use the rmdir command to delete it. You can delete a directory only when the directory is empty. To remove an empty directory tree, you can use the -p option, like this: rmdir -p /usr/src/book/java/examples/applets This command removes the empty parent directories of applets. The command stops when it encounters a directory that's not empty. ## Commands for finding files The ${\tt find}$ command is useful for locating files (and directories) that meet your search criteria. When I began using Unix many years ago (Berkeley Unix in the early 1980s), I was confounded by the find command. I stayed with one basic syntax of find for a long time before graduating to more complex forms. The basic syntax that I discovered first was for finding a file anywhere in the file system. Here's how it goes: Suppose you want to find any file or directory with a name that starts with gnome. Type the following find command to find these files: ``` find / -name "gnome*" -print ``` If you're not logged in as root, you may get a bunch of error messages. If these error messages annoy you, just modify the command as follows and the error messages are history. (Or, as Unix aficionados say, "Send 'em to the bit bucket.") ``` find / -name "gnome*" -print 2> /dev/null ``` This command tells find to start looking at the root directory (/) to look for filenames that match gnome* and to display the full pathname of any matching file. The last part (2> /dev/null) simply sends the error messages to a special file that's the equivalent of simply ignoring them. Book II Chapter 4 Navigating the Linux File System You can use variations of this simple form of find to locate a file in any directory (as well as any subdirectories contained in the directory). If you forget where in your home directory you've stored all files named report* (names that start with *report*), you can search for the files by using the following command: ``` find ~ -name "report*" -print ``` When you become comfortable with this syntax of find, you can use other options of find. For example, to find only specific types of files (such as directories), use the type option. The following command displays all top-level directory names in your Linux system: ``` find / -type d -maxdepth 1 -print ``` You probably don't have to use the complex forms of find in a typical Linux system. But if you ever need to, you can look up the rest of the find options by using the following command: ``` man find ``` An easy way to find all files that match a name is to use the locate command, which searches a periodically updated database of files on your system. For example, here's a typical output I get when I type **locate Xresources** on a Debian system (the output may differ based on your distribution): ``` /etc/X11/Xresources /etc/X11/Xresources/xbase-clients /etc/X11/Xresources/xfree86-common ``` The locate command isn't installed by default in some Linux distributions. To install it, open the Add/Remove Software application for your distribution and search for locate. Then select the package from the search results and click Accept to install it. ## Commands for mounting and unmounting Suppose you want to access the files on this book's companion DVD-ROM when you're logged in at a text console (with no GUI to help you). To do so, you have to first mount the DVD-ROM drive's file system on a specific directory in the Linux file system. Start by looking at the /etc/fstab file for clues to the name of the CD-ROM device. For example, some Linux distributions use the device name /dev/cdrom to refer to CD/DVD-ROM drives, whereas others may use device names such as /dev/hdc,/dev/cdroms/cdrom0, or /dev/cdrecorder (for a DVD/CD-R drive). The entry in /etc/fstab file also tells you the directory where that distribution expects the CD/DVD to be mounted. Some distributions use /media/cdrom as the mount point, whereas others use /media/cdrom0, or /media/cdrecorder. It is customary to use the cdrom term to mean both CD-ROM and DVD-ROM. Log in as root (or type **su** - to become root), insert the DVD-ROM in the DVD drive, and then type the following command: ``` mount /dev/hdc /media/cdrom0 ``` This command mounts the file system on the device named /dev/hdc (an IDE DVD/CD-ROM drive) on the /media/cdrom0 directory (which is also called the *mount point*) in the Linux file system. After the mount command successfully completes its task, you can access the files on the DVD-ROM by referring to the /media/cdrom0 directory as the top-level directory of the disc. In other words, to see the contents of the DVD-ROM, type ``` ls -F /media/cdrom0 ``` When you've finished using the DVD-ROM — and before you eject it from the drive — you have to unmount the disc drive with the
following umount command: ``` umount /dev/hdc ``` You can mount devices on any empty directory on the file system. However, each distribution has customary locations with directories meant for mounting devices. For example, some distributions use directories in /mnt whereas others use the /media directory for the mount points. ## Commands for checking disk-space usage You can use two simple commands — df and du — to check the disk-space usage on your system. The df command shows you a summary of disk-space usage for all mounted devices. For example, when I type **df** on a PC with many mounted storage devices, here's what I get as output: ``` Filesystem 1K-blocks Used Available Use% Mounted on /dev/hdb6 28249372 2377292 25872080 9% / tmpfs 383968 12 383956 1% /dev/shm /dev/hda5 5766924 1422232 4051744 26% /ubuntu/boot /dev/hda7 6258100 2989200 2951004 51% /debian/boot /dev/hda9 5766924 1422232 4051744 26% /ubuntu /dev/hda10 5766924 1872992 3600984 35% /mepis /dev/hda11 6258100 2989200 2951004 51% /debian /dev/hdb3 19558500 1370172 1818828 8% /xandros /dev/hdb2 16087676 10593364 5494312 66% /windows/C /dev/hdb1 107426620 9613028 97813592 9% /windows/D ``` Book II Chapter 4 Navigating the Linux File System This table lists the device, the total kilobytes of storage, how much of that memory is in use, how much is available, the percentage being used, and the mount point. To see the output of df in a more readable format, type **df** -h. The output ``` Filesystem Size Used Avail Use% Mounted on /dev/hdb6 27G 2.3G 25G 9% / tmpfs 375M 12K 375M 1% /dev/shm /dev/hda5 5.5G 1.4G 3.9G 26% /ubuntu/boot /dev/hda7 6.0G 2.9G 2.9G 51% /debian/boot /dev/hda9 5.5G 1.4G 3.9G 26% /ubuntu /dev/hda10 5.5G 1.8G 3.5G 35% /mepis /dev/hda11 6.0G 2.9G 2.9G 51% /debian /dev/hdb3 19G 1.4G 18G 8% /xandros /dev/hda2 16G 11G 5.3G 66% /windows/C /dev/hdb1 103G 9.2G 94G 9% /windows/D ``` If you compare this output with the output of the plain df (the preceding listing), you see that df -h prints the sizes with terms like M for megabytes and G for gigabytes. These are easier to understand than 1K-blocks. The other command, du, is useful for finding out how much space a directory takes up. For example, type du /etc/X11 to view the contents of all the directories in the /etc/X11 directory. (This directory contains X Window System configuration files.) You see the following: ``` 12 /etc/X11/Xresources 36 /etc/X11/Xsession.d 272 /etc/X11/app-defaults 20 /etc/X11/cursors 12 /etc/X11/xinit . . . lines deleted . . . 12 /etc/X11/fonts/misc 8 /etc/X11/fonts/100dpi 8 /etc/X11/fonts/75dpi 8 /etc/X11/fonts/Speedo 8 /etc/X11/fonts/Type1 48 /etc/X11/fonts 2896 /etc/X11 ``` Each directory name is preceded by a number — which tells you the number of kilobytes of disk space used by that directory. Thus the /etc/X11 directory uses 2896KB (or about 2.9MB) of disk space. If you simply want the total disk space used by a directory (including all the files and subdirectories contained in that directory), use the -s option, as follows: ``` du -s /etc/X11 2896 /etc/X11 ``` The -s option causes du to print just the summary information for the entire directory. Just as df -h prints the disk-space information in megabytes and gigabytes, you can use the du -h command to view the output of du in more readable form. For example, here's how I combine it with the -s option to see the space that I'm using in my home directory (/home/edulaney): du -sh /home/edulaney 645M /home/edulaney Book II Chapter 4 > Navigating the Linux File System # Chapter 5: Introducing Linux Applications #### In This Chapter - **✓** Taking stock of typical Linux applications - ✓ Trying out the office applications - Playing with multimedia - Working with images ach Linux distribution comes with plenty of applications for all your diverse computing needs, as you can see by simply looking at the menus in the GUI desktops. Often, more than one application of the same type exists. Most distributions come with the LibreOffice office application suite that provides a word processor, spreadsheet, presentation software, and more. You'll find many choices for CD players and multimedia players, plus games, utility programs, and other useful tools, such as a scanner and digital camera applications. Some commercial distributions come with commercial office suites as well. When it comes to playing *multimedia* (audio and video in various formats, such as MP3, MP4, and QuickTime), freely available Linux distributions rarely come with the appropriate decoders because of licensing restrictions; the multimedia application runs but cannot play the MP3 file or the DVD movie because it lacks a decoder. Commercial distributions usually come with some of these decoders. This chapter offers an overview of some Linux applications. After you read about these applications, you can explore them further and have them at your disposal when needed. This chapter also provides an introduction to the GUI file managers, which allow you to browse and manipulate individual files. # Taking Stock of Linux Applications A list of all the Linux applications available could take up much of the bulk of this book. A major application almost always has a website where you can get more information about it. Each Linux distribution comes with many applications and utilities; this chapter is but a brief sampling of what is available. Typically, as you install a Linux distribution, you must select specific groups of applications to install. The exact list of applications on your Linux system depends on the choices you make during the installation. It's easy to install missing applications in Debian (and Debian-based distributions, such as Ubuntu) as long as you have a broadband (cable or DSL) connection to the Internet. For example, to see whether the K3b CD/DVD burner exists for Debian, type **apt-cache search k3b**. You get output similar to the following: ``` k3b - A sophisticated KDE cd burning application k3b-i18n - Internationalized (i18n) files for k3b k3blibs - The KDE cd burning application library - runtime files k3blibs-dev - The KDE cd burning application library - development files ``` Next, type **apt-get install k3b** and a few moments later you'll have K3b installed on your Debian system. This ease of installing (or upgrading) software is why Debian users swear by apt-get (even though it's a command-line tool). # Introducing Office Applications and Tools Word processor, spreadsheet, presentation software, calendar, calculator — these are some office staples. Most Linux distributions come with the Libre-Office suite of office applications and tools. You can try all of them one by one and see which one takes your fancy. Each application is fairly intuitive to use. Although some nuances of the user interface may be new to you, you'll become comfortable with the interface after using it a few times. This section briefly introduces the following applications, as well as some other commercially available office applications for Linux: - ◆ LibreOffice Suite: A Microsoft Office-like office suite with the Writer word processor, the Calc spreadsheet program, the Impress presentation program, the Draw drawing and illustration application, and Math, a mathematical formula editor - ◆ Kontact: A personal information management application in KDE - ◆ Calculators: A GNOME calculator and KDE calculator - ◆ Aspell: A spelling checker # LibreOffice.org office suite LibreOffice.org is not only a website, but also an office suite similar to major office suites such as Microsoft Office. Its main components are the Writer word processor, the Calc spreadsheet, and the Impress presentation program. You can easily start LibreOffice.org — either the overall suite or an individual application — from most GUI desktops by clicking a panel icon or by making a choice from the main menu. For example, in Ubuntu, you can click a desktop icon to open the initial window of the LibreOffice.org suite. You can create new documents or open existing documents (which can be Microsoft Office files as well) from the main window. #### Writer Choosing File New New Text Document from any LibreOffice.org window starts LibreOffice.org Writer with a blank document in its main window. Using Writer is simple — if you're familiar with Microsoft Word, you should have no trouble finding your way around Writer. You can type text into the blank document, format text, and save text. You can also open documents that you've prepared with Microsoft Word on a Windows machine. Figure 5-1 shows a Microsoft Word document opened in LibreOffice Writer. Figure 5-1: You can prepare documents in Libre-Office Writer. When you save a document, Writer saves it in LibreDocument text format by default, in a file with the .odt extension. If you need to share Writer documents with Microsoft Word, you can save the documents in several formats, including Microsoft Word and Rich Text (.rtf) formats. Writer is simple and intuitive to use. If you need help, online help is available by choosing Help from the Writer menu (or pressing F1 in newer versions). This brings up the Help window with help information on Writer. You can then click the links to view specific help information. Book II Chapter 5 Introducing Linux Applications #### Calc Calc is the spreadsheet program in the LibreOffice application suite. To start Calc, choose Spreadsheet from the Office category in the main menu or choose File New Spreadsheet from any LibreOffice window. Calc displays its main window, which looks similar to that of Windows-based spreadsheets such as Microsoft Excel. (Calc can read and write Microsoft Excel-format spreadsheet files.) Use Calc in the same way you use Microsoft Excel. You can type entries in cells, use formulas, and format the cells. (For example, you can specify the type of value and the number of digits after the decimal point.) Figure 5-2 shows a typical spreadsheet in Calc. Figure 5-2: Prepare your spreadsheets
with LibreOffice Calc. When preparing the spreadsheet, use formulas in the same format that you would in Microsoft Excel. For example, use the formula **SUM(D2:D6)** to add the entries from cell D2 to D6. To set cell D2 as the product of the entries A2 and C2, type =**A2*C2** in cell D2. To find out more about the functions available in LibreOffice.org Calc, choose Help⇔LibreOffice.org Help from the menu (or press F1 in newer versions). This opens the LibreOffice.org Help window, from which you can browse the functions by category and click a function to read more about it. To save the spreadsheet, choose File Save As. A dialog box appears, from which you can specify the file format, the directory location, and the name of the file. When you save a document, Calc saves it in LibreDocument spreadsheet format in a file with the .ods extension by default. LibreOffice.org Calc can save the file in several other formats, including Microsoft Excel, as well as text file with comma-separated values (CSV). If you want to exchange files with Microsoft Excel, save the spreadsheet in Microsoft Excel format (choose an appropriate version for Excel). Then you can transfer that file to a Windows system and open it in Microsoft Excel. #### *Impress* Impress is similar to Microsoft PowerPoint; it allows you to create unique and creative slide presentations for a variety of purposes. To run Impress, choose Presentation from the Office category in the main menu or choose File: Presentation from any LibreOffice window. When you first open Impress, the program prompts you for the presentation style and template. To begin working, select Empty presentation and click Create. To open an existing document, select the appropriate option from the Presentation Wizard and click Open. Then select the presentation file you want to open. You can open Microsoft PowerPoint files in Impress. Figure 5-3 shows a typical slide presentation in Impress. Figure 5-3: You can prepare presentations in LibreOffice Impress. Book II Chapter 5 Introducing Linux Applications The Impress window shows the first slide together with an outline view of the slides along the left side. The exact appearance depends on the document type and template you select. You can begin adding text and other graphic objects such as images, text, and lines to the slide. To insert a new slide, choose Insert⇔Slide from the menu. A blank slide appears. You can then add text and graphics to that new slide. To save a presentation, choose File-Save. For new documents, you have to provide a filename and select the directory to which you want to save the file. If you want to share the slides with someone who uses Microsoft PowerPoint, save the presentation in Microsoft PowerPoint format. #### **Calendars** KDE comes with Kontact — an application that integrates existing KDE applications such as KMail mail reader and the KOrganizer calendar program into a single graphical personal information manager. You can start Kontact from panel icons or the main menu. (The location of the menu entry depends on the Linux distribution.) When Kontact starts, it usually displays a summary window with information about new e-mail messages, upcoming scheduled events, and more. You can explore each application individually by clicking the icons in the left pane of the Kontact window. To add an event or appointment for a specific date and time, select the date from the calendar, double-click the time, and type a brief description of the appointment in the New Event dialog box that appears. Click OK when you're finished. #### **Calculators** You have a choice of the GNOME calculator or the KDE calculator. Both are scientific calculators; you can do typical scientific calculations (such as square root and inverse) as well as trigonometric functions (such as sine, cosine, and tangent). To use the calculator, look for it in the Utilities or Accessories category of the main menu. Figure 5-4 shows the KDE calculator in SUSE. Figure 5-4: Do your calculations in the KDE calculator. You can display additional buttons by selecting options from the Settings menu. For example, choose Settings Statistic Buttons to show buttons that enable you to perform statistical calculations with the calculator. # Checking out Multimedia Applications Most Linux distributions include quite a few multimedia applications — mostly multimedia audio players and CD players, but also applications for using digital cameras and burning CD-ROMs and DVDs. To play some other multimedia files (such as MPEG video), you may have to download and install additional software on your Linux system. Here's a quick sketch of a few typical multimedia tasks and the applications you can use to perform these tasks: - ◆ Using digital cameras: Use a digital camera tool to download photos from your digital camera in Linux (or simply access the camera as a USB mass storage device). - ◆ Playing audio CDs: Use one of many audio CD players that come with Linux. - ◆ Playing sound files: Use Rhythmbox or XMMS multimedia audio players. (You have to download some additional software to play MP3 files with Rhythmbox or XMMS.) You can also download other players from the Internet. - ◆ Burning a CD or DVD: Use a DVD or CD burner, such as K3b, to burn audio and data CDs/DVDs. # Using a digital camera Most Linux distributions come with a digital camera application that you can use to download pictures from digital cameras. For example, SUSE and Xandros come with digiKam, which works with many makes and models of digital cameras. Depending on the model, the cameras can connect to the serial port or the Universal Serial Bus (USB) port. To use digiKam with your digital camera, follow these steps: - 1. Connect your digital camera to the serial port or USB port (whichever interface the camera supports) and turn on the camera. - 2. Start digiKam. Look for digiKam in the main menu under the Graphics or Images submenu. The first time you open digiKam, you will be asked to specify a default location in which to store images, and to choose a number of other configuration preferences. 3. From the digiKam menu, choose Settings⇔Configure digiKam. A configuration dialog box appears. Book II Chapter 5 ntroducing Linux Applications 4. Click the Cameras tab in the dialog box, and then click Auto Detect. If your camera is supported and the camera is configured to be in PTP (Picture Transfer Protocol) mode, the camera is detected. If not, you can get the photos from your camera by using an alternate method (described after these steps). Choose your camera model from the Camera menu. A new window appears and, after a short while, displays the photos in the camera. Click the thumbnails to select the images you want to download; then choose Camera Download to download the images. digiKam downloads the images. You can save these files in a folder and edit the photos in The GIMP or your favorite photo editor. Don't despair if digiKam doesn't recognize your digital camera. You can still access the digital camera's storage medium (compact flash card, for example) as a USB mass storage device, provided your camera supports USB mass storage. To access the images on your USB digital camera, use the following steps. 1. Read the camera manual and use the menu options of the camera to set the USB mode to Mass Storage. If the camera doesn't support USB mass storage, you can't use this procedure to access the photos. If the camera supports the Picture Transfer Protocol mode, you can use digiKam to download the pictures. 2. Connect your digital camera to the USB port by using the cable that came with the camera. Then turn on the camera. Linux detects the camera and opens the contents of the camera in a file manager window. - 3. Click to select photos and copy them to your hard drive by dragging and dropping them into a selected folder. - Close the file manager window, disconnect the USB cable from the PC, and turn off the camera. Whether you're using a digital camera tool such as digiKam or accessing your camera as you would any other storage device, Linux makes it easy to get your pictures onto your computer. ### Playing audio CDs All Linux distributions come with either the GNOME or KDE CD-player applications. To play an audio CD, you need a sound card, and that sound card must be configured to work in Linux. In some distributions, when you insert an audio CD into the drive, a dialog box appears and asks whether you want to play the CD with the CD player. If this dialog box doesn't appear, locate an audio CD player by choosing Applications: Sound and Video from the main menu. The KDE CD player displays the title of the CD and the name of the current track. The CD player gets the song titles from http://freedb.org — a free, open source CD database on the Internet (freedb.freedb.org at port 888). You need an active Internet connection for the CD player to download song information from the CD database. After the CD player downloads information about a particular CD, it caches that information in a local database for future use. The CD player user interface is intuitive, and you can figure it out easily. One nice feature is that you can select a track by title. # Playing sound files You can use Rhythmbox or XMMS to open and play sound files (for example, MP3 files). Users with large MP3 music libraries usually like Rhythmbox because it can help organize their music files. You can start Rhythmbox by choosing the music player application from the main menu in several distributions, including Debian and Fedora. When you first start Rhythmbox, it displays an assistant that prompts you for the location of your music files so that Rhythmbox can manage your music library. After you identify the locations of music files, Rhythmbox starts and displays the library in an organized manner. You can then select music and play it. XMMS is another music player that can play many types of sound files, including Ogg Vorbis,
FLAC (Free Lossless Audio Codec, an audio file format similar to MP3), and Windows WAV. You can start XMMS by choosing the audio player application from the main menu (look under Multimedia or Sound & Video). After XMMS starts, you can open a sound file (such as an MP3 file) by choosing Window Menuch Play File or by pressing L. Then select one or more music files from the Load File dialog box. Click the Play button, and XMMS starts playing the sound file. # Burning a CD or DVD Nowadays, most GUI file managers have the capability to burn CDs. For example, Nautilus File Manager and Xandros File Manager have built-in features for burning CDs and DVDs. Linux distributions also come with standalone GUI programs that enable you to easily burn CDs and DVDs. For example, K3b is a popular CD/DVD-burning application for KDE that's available in Knoppix and SUSE. Most CD-burning applications are simple to use. You basically gather the files that you want to burn to the CD or DVD and then start the burning process. Of course, for this to work, your PC must have a CD or DVD burner installed. Book II Chapter 5 Introducing Linux Applications The upper part of the K3b window is for browsing the file system to select what you want to burn onto a CD or DVD. The upper-left corner shows the CD-writer device installed. To burn a CD, you start with one of the projects shown in the lower part of the K3b window — New Audio CD Project, for example, or New Data DVD Project. Then you have to add files and, finally, burn the project to the CD or DVD by choosing Project⇔Burn or pressing Ctrl+B. For an audio CD, you can drag and drop MP3 files as well as audio tracks. K3b needs the external command-line programs cdrecord and cdrdao to burn CDs. K3b also needs the growisofs program to burn DVDs. If you get an error message about missing cdrdao in Debian, make sure that your Debian system is connected to the Internet, and then type **apt-get install cdrdao** to install it. # Using Graphics and Imaging Apps You can use graphics and imaging applications to work with images and graphics (line drawings and shapes). Two of the most popular of these applications are - ◆ The GIMP (GNU Image Manipulation Program): A program for viewing and performing image-manipulation tasks, such as photo retouching, image composition, and image creation. - ◆ Gnome Ghostview (GGv): A graphical application capable of displaying PostScript files. #### The GIMP The GIMP is an image-manipulation program written by Peter Mattis and Spencer Kimball and released under the GNU General Public License (GPL). Most Linux distributions come with this program, although you may have to specifically select a package to install it. The GIMP is comparable to other image-manipulation programs, such as Adobe Photoshop and Corel PHOTO-PAINT. To try out The GIMP, look for it under the Graphics category in the main menu. When you start The GIMP, it displays a window with copyright and license information. Click the Continue button to proceed with the installation. The next screen shows the directories to be created when you proceed with a personal installation of The GIMP. If you can't find The GIMP under the Graphics category, choose Add/Remove Software from the System Settings menu and install it from there. The GIMP installation involves creating a directory in your home directory and placing a number of files there. This directory essentially holds information about any changes to user preferences you may make to The GIMP. Go ahead and click the Continue button at the bottom of the window. The GIMP creates the necessary directories, copies the necessary files to those directories, and guides you through a series of dialog boxes to complete the installation. When the installation is finished, click the Continue button. The GIMP then loads any *plug-ins* — external modules that enhance its functionality. It displays a startup window that shows a message about each plug-in as it loads. After finishing the startup, The GIMP displays a tip of the day in a window. You can browse the tips and click the Close button to close the Tip window. At the same time, The GIMP displays a number of other windows, including a main navigation window titled The GIMP, a Toolbox window (usually on the left side), a Brush Selection window, and a Layers, Channels, Paths window. The center navigation window gives you access to new images to work with, image-editing functions, and a number of effect filters that you can apply to the image. The Toolbox window lets you quickly select a number of important image-manipulation tools. To open an image file in The GIMP, choose File Open. The Load Image dialog box appears. You can change directories and select the image file that you want to open. The GIMP can read all common image file formats, such as GIF, JPEG, TIFF, PCX, BMP, PNG, and PostScript. After you select the file and click OK, The GIMP loads the image into a new window. The Toolbox window has many buttons that represent the tools you use to edit the image and apply special effects. You can get pop-up help on each tool button by placing the mouse pointer over the button. You can select a tool by clicking the tool's button, and you can apply that tool's effects to the image to see what it does. When you right-click the image window, The GIMP displays a pop-up menu that has most of the options from The GIMP's top toolbar. You can do much more than just load and view images with The GIMP, but a complete discussion of all its features is beyond the scope of this book. If you want to try the other features of The GIMP, consult *The GIMP User Manual* (GUM), available online at http://www.gimp.org/docs/. You can also choose HelpcpGIMP OnlinecpUser Manual Website to access the online documentation for The GIMP. (You need an Internet connection for this command to work.) Visit The GIMP home page at www.gimp.org to find the latest news about The GIMP as well as links to other resources. Book II Chapter 5 Introducing Linux Applications #### GNOME Ghostview GNOME Ghostview is a graphical application ideal for viewing and printing PostScript or PDF documents. For a long document, you can view and print selected pages. You can also view the document at various levels of magnification by zooming in or out. To run GNOME Ghostview in Fedora, choose Graphics PostScript Viewer from GUI desktop. The GNOME Ghostview application window appears. In addition to the menu bar and toolbar along the top edge, a vertical divide splits the main display area of the window into two parts. To load and view a PostScript document in GNOME Ghostview, choose FileDopen, or click the Open icon on the toolbar. GNOME Ghostview displays a File-Selection dialog box. Use this dialog box to navigate the file system and select a PostScript file. For example, select the file tiger.ps in the /usr/share/ghostscript-8.64/examples directory. (Use your system's version number of Ghostscript in place of 8.64). To open the selected file, click the Open File button in the File-Selection dialog box. GNOME Ghostview opens the selected file, processes its contents, and displays the output in its window. GNOME Ghostview is useful for viewing various kinds of documents that come in PostScript format. (These files typically have the .ps extension.) You can also open PDF files — which typically have .pdf extensions — in GNOME Ghostview. # Chapter 6: Using Text Editors #### In This Chapter - ✓ Checking out different GUI text editors - ✓ Working with the ed text editor - Getting to know the vi text editor Ithough the desktop provides a beautiful graphical interface that's a pleasure to work in, much goes on outside that interface. Most Linux system configuration files are text files. Additionally, Linux gives you the ability to create shell scripts and interact with the operation of a number of programs — all by using text files. When all is working as it should, you can edit (and even create) those files with graphical tools, but it's highly recommended that you also know how to edit them outside that interface, should a problem exist that keeps the X Window System from loading. Whether in the interface or not, you'll be using *text editors*, programs designed to interact with text files. In this chapter, you're introduced to a few text editors — both GUI editors and text mode editors. # Using GUI Text Editors Each of the GUI desktops — GNOME and KDE — comes with GUI text editors (text editors that have graphical user interfaces). To use a GUI text editor, look in the main menu and search for text editors in an appropriate category. For example, in the GNOME desktop, choose Applications. Text Editor and this will open gedit. After you have a text editor up and running, you can open a file by clicking the Open button on the toolbar to display the Open File dialog box. You can change directories and then select the file to edit by clicking the OK button. The GNOME text editor loads the file in its window. You can open more than one file at a time and move among them as you edit the files. Figure 6-1 shows a typical editing session with the editor. files. In this case, the editor has two files — a new file being written, and motd (from the /etc directory) — open for editing. The filenames appear as tabs below the toolbar of the editor's window. You can switch between the files by clicking the tabs. The current filename appears in the last line of the window. If you open a file for which you have only read permission, the text [Read Only] is appended to the filename shown in the window title to indicate that the file is read-only and the location of the file is displayed at the top (such as /etc). The indication that the file is read-only often appears when a regular user is opening system files that only the root can modify. The rest of the text editing steps are intuitive. To enter new text, click to position the cursor and begin typing. You can select text, copy, cut,
and paste by using the buttons on the toolbar above the text editing area. From the KDE desktop, you can start the KDE text editor (KWrite) by choos-File-Open to display a dialog box. From this dialog box, you can go to the directory of your choice, select the file to open, and click OK. KWrite opens the file and displays its contents in the window; you can then edit the file, as shown in Figure 6-2. Book II Chapter 6 Figure 6-2: You can use the KDE KWrite text editor to edit files. # Text Editing with ed and vi GUI text editors enable you to edit text files using the mouse and keyboard much the same way as you use any word processor. Text mode editors are a different beast — you work using only the keyboard and you have to type cryptic commands to perform editing tasks, such as cutting and pasting text or entering and deleting text. Linux comes with two text mode text editors: - ♦ ed: A line-oriented text editor - vi: A full-screen text editor that supports the command set of an earlier editor named ex The ed and vi editors are cryptic compared to the graphical text editors. However, you should still get to know the basic editing commands of ed and vi because sometimes these two may be the only editors available. For example, if Linux refuses to boot from the hard drive, you may have to boot from a CD, DVD, or flash drive. In that case, you have to edit system files with the ed editor because that editor is small enough to fit on the boot medium. I walk you through the basic text editing commands of ed and vi — they're not that hard. # Using ed Typically, you have to use ed only when you boot a minimal version of Linux (for example, from the medium you've set up as a boot disk), and the system doesn't support full-screen mode. In all other situations, you can use the vi editor, which works in full-screen text mode. When you use ed, you work in command mode or text input mode: - ◆ Command mode: This mode is the default. In this mode, anything that you type is interpreted as a command. The ed text editor has a simple command set in which each command consists of one or more characters. - ◆ Text input mode: This mode is for typing text. You can enter text input mode with the commands a (append), c (change), or i (insert). After entering lines of text, you can leave text input mode by entering a period (.) on a line by itself. To practice editing a file, copy the /etc/fstab file to your home directory by issuing the following commands: ``` cd cp /etc/fstab . ``` Now you have a file named fstab in your home directory. Type **ed -p: fstab** to begin editing a file in ed. The editor responds: ``` 878 : ``` This example uses the -p option to set the prompt to the colon character (:) and opens the fstab file (in the current directory, which is your home directory) for editing. The ed editor opens the file, reports the number of characters in the file (878), displays the prompt (:), and waits for a command. When you're editing with ed, make sure that you always turn on a prompt character (use the -p option). Without the prompt, distinguishing whether ed is in text input mode or command mode is difficult. After ed opens a file for editing, the current line is the last line of the file. To see the current line number (the current line is the line to which ed applies your command), use the .= command, like this: ``` : •= 9 ``` This output tells you that the fstab file has nine lines. (Your system's /etc/fstab file may have a different number of lines, in which case ed shows a different number.) You can use the 1, \$p command to see all lines in a file, as the following example shows: ``` :1,$p # This file is edited by fstab-sync - see 'man fstab-sync' for details /dev/VolGroup00/LogVol00 / ext3 defaults 1 1 LABEL=/boot /boot ext3 defaults 1 2 /dev/devpts /dev/pts devpts gid=5,mode=620 0 0 /dev/shm /dev/shm tmpfs defaults 0 0 /dev/proc /proc proc defaults 0 0 /dev/sys /sys sysfs defaults 0 0 /dev/VolGroup00/LogVol01 swap swap defaults 0 0 /dev/scd0 /media/cdrecorder auto pamconsole,exec,noauto,managed 0 0 /dev/hdc /media/cdrom auto pamconsole,exec,noauto,managed 0 0 : ``` To go to a specific line, type the line number: . 2 The editor responds by displaying that line: ``` /dev/VolGroup00/LogVol00 / ext3 defaults 1 1 . ``` Suppose you want to delete the line that contains cdrom. To search for a string, type a slash (/) followed by the string that you want to locate: ``` :/cdrom /dev/hdc /media/cdrom auto pamconsole,exec,noauto,managed 0 0 : ``` The editor locates the line that contains the string and then displays it. That line becomes the current line. To delete the current line, use the d command as follows: : d : To replace a string with another, use the s command. To replace cdrom with the string cd, for example, use this command: ``` :s/cdrom/cd/ ``` To insert a line in front of the current line, use the i command: ``` :i (type the line you want to insert) .(type a single period to indicate you're done) ``` Book II Chapter 6 Using Text Editors You can enter as many lines as you want. After the last line, enter a period (.) on a line by itself. That period marks the end of text input mode, and the editor switches to command mode. In this case, you can tell that ed switches to command mode because you see the prompt (:). When you're happy with the changes, you can write them to the file with the w command. If you want to save the changes and exit, type wq to perform both steps at the same time: :**wq** 857 The ed editor saves the changes in the file, displays the number of saved characters, and exits. If you want to quit the editor without saving any changes, use the Q command. These examples give you an idea of how to use ed commands to perform the basic tasks of editing a text file. Table 6-1 lists some of the commonly used ed commands. | Table 6-1 | Common ed Commands | | | |-----------|--|--|--| | Command | Does the Following | | | | !command | Executes a shell command. (For example, !pwd displays the current directory.) | | | | \$ | Goes to the last line in the buffer. | | | | % | Applies a command that follows to all lines in the buffer. (For example, %p prints all lines.) | | | | + | Goes to the next line. | | | | +n | Goes to the n th next line (where n is a number you designate). | | | | , | Applies a command that follows to all lines in the buffer. (For example, , p prints all lines.) This command is similar to $%$. | | | | - | Goes to the preceding line. | | | | -n | Goes to the n th previous line (where n is a number you designate). | | | | • | Refers to the current line in the buffer. | | | | /text/ | Searches forward for the specified text. | | | | ; | Refers to a range of lines — the current line through the last line in the buffer. | | | | = | Prints the line number. | | | | ?text? | Searches backward for the specified text. | | | | ^ | Goes to the preceding line. (See also the - command.) | | | | Command | Does the Following | | |-------------|--|--| | ^n | Goes to the n th previous line (where n is a number you designate). (See also the $-n$ command.) | | | a | Appends the current line. | | | С | Changes the specified lines. | | | d | Deletes the specified lines. | | | i | Inserts text before the current line. | | | n | Goes to line number n (where n is a number you designate). | | | Press Enter | Displays the next line and makes that line current. | | | đ | Quits the editor. | | | Q | Quits the editor without saving changes. | | | r file | Reads and inserts the contents of the file after the current line. | | | s/old/new/ | Replaces an old string with a new one. | | | u | Undoes the last command. | | | W file | Appends the contents of the buffer to the end of the specified file. | | | w file | Saves the buffer in the specified file. (If no file is named, it saves in the default file — the file whose contents ed is currently editing.) | | #### Book II Chapter 6 sing Text Editor # Using vi After you dabble with ed, you'll find vi is a dream come true, even though it's still a command-line editor. The vi editor is a full-screen text editor, so you can view several lines at the same time. Most Unix systems, including Linux, come with vi. Therefore, if you know the basic features of vi, you can edit text files on almost any Unix-based system. When vi edits a file, it reads the file into a *buffer* — a block of memory — so you can change the text in the buffer. The vi editor also uses temporary files during editing, but the original file isn't altered until you save the changes. To start the editor, type **vi** and follow it with the name of the file you want to edit, like this: vi /etc/fstab The vi editor then loads the file into memory and displays the first few lines in a text screen and positions the cursor on the first line, as shown in Figure 6-3. The last line shows the pathname of the file as well as the number of lines (2) and the number of characters (59) in the file. In this case, the text [readonly] appears after the filename because I'm opening the /etc/fstab file while I'm logged in as a normal user (which means I don't have permission to modify the file). Later, the last line in the vi display functions as a command entry area. The rest of the lines display the file. If the file contains fewer lines than the screen, vi displays the empty lines with a tilde (\sim) in the first column. The current line is marked by the cursor, which appears as a small black rectangle. The cursor appears on top of a character. When using vi, you work in one of three modes: - ◆ Visual command mode: This mode is the default. In this mode, anything that you type is interpreted as a command that applies to the line
containing the cursor. The vi commands are similar to the ed commands. - ♦ Colon command mode: You use this mode for reading or writing files, setting vi options, and quitting vi. All colon commands start with a colon (:). When you type the colon, vi positions the cursor on the last line and waits for you to type a command. The command takes effect when you press Enter. - **Text input mode:** This mode is for typing text. You can enter text input mode with the command a (insert after cursor), A (append at end of line), (open a line below the current one), (open a line above the current one), or i (insert after cursor). After entering lines of text, you have to press Esc to leave text input mode and re-enter visual command mode. One problem with all these modes is that you can't easily tell the current mode that $v \dot{=} is$ in. You may begin typing only to realize that $v \dot{=} is$ isn't in text input mode, which can be frustrating. If you want to make sure that vi is in command mode, just press Esc a few times. (Pressing Esc more than once doesn't hurt.) To view online help in vi, type :help while in colon command mode. When you're finished with help, type :q to exit the Help screen and return to the file you're editing. The vi editor initially positions the cursor on the first character of the first line, and one of the handiest things you can know is how to move the cursor around. To get a bit of practice, try the commands shown in Table 6-2. | Table 6-2 | Cursor Movement Commands in vi Moves the Cursor | | |---------------|--|--| | Кеу | | | | ↓ | One line down | | | ↑ | One line up | | | ← | One character to the left | | | \rightarrow | One character to the right | | | W | One word forward | | | В | One word backward | | | Ctrl+D | Half a screen down | | | Ctrl+U | Half a screen up | | You can go to a specific line number at any time by using the handy colon command. To go to line 6, for example, type the following and then press Enter: : 6 When you type the colon, vi displays the colon on the last line of the screen. From then on, vi uses any text you type as a command. You have to press Enter to submit the command to vi. In colon command mode, vi accepts all commands that the ed editor accepts — and then some. To search for a string, first type a slash (/). The vi editor displays the slash on the last line of the screen. Type the search string and then press Enter. The vi editor locates the string and positions the cursor at the beginning of that string. Thus, to locate the string cdrom in the file /etc/fstab, type Book II Chapter 6 Using Text Editors To delete the line that contains the cursor, type **dd**. The vi editor deletes that line of text and makes the next line the current one. To begin entering text in front of the cursor, type i. The vi editor switches to text input mode. Now you can enter text. When you finish entering text, press Esc to return to visual command mode. After you finish editing the file, you can save the changes in the file with the :w command. To quit the editor without saving any changes, use the :q! command. If you want to save the changes and exit, you can use the :wq command to perform both steps at the same time. The vi editor saves the changes in the file and exits. You can also save the changes and exit the editor by pressing Shift+ZZ (hold Shift down and press Z twice). vi accepts a large number of commands in addition to the commands I just mentioned. Table 6-3 lists some commonly used vi commands, organized by task. | Table 6-3 | Common vi Commands Does the Following | | |-------------|--|--| | Command | | | | Insert Text | | | | a | Inserts text after the cursor. | | | A | Inserts text at the end of the current line. | | | I | Inserts text at the beginning of the current line. | | | i | Inserts text before the cursor. | | | Delete Text | | | | D | Deletes up to the end of the current line. | | | dd | Deletes the current line. | | | dG | Deletes from the current line to the end of the file. | | | dw | Deletes from the cursor to the end of the following word. | | | x | Deletes the character on which the cursor rests. | | | Change Text | | | | С | Changes up to the end of the current line. | | | СС | Changes the current line. | | | J | Joins the current line with the next one. | | | rx | Replaces the character under the cursor with \boldsymbol{x} (where \boldsymbol{x} is any character). | | | Command | Does the Following | | |--------------------|---|--| | Move Cursor | | | | h or← | Moves one character to the left. | | | jor↓ | Moves one line down. | | | k or ↑ | Moves one line up. | | | L | Moves to the end of the screen. | | | l or → | Moves one character to the right. | | | W | Moves to the beginning of the following word. | | | b | Moves to the beginning of the previous word. | | | Scroll Text | | | | Ctrl+D | Scrolls forward by half a screen. | | | Ctrl+U | Scrolls backward by half a screen. | | | Refresh Screen | | | | Ctrl+L | Redraws screen. | | | Cut and Paste Text | | | | уу | Yanks (copies) current line to an unnamed buffer. | | | Р | Puts the yanked line above the current line. | | | р | Puts the yanked line below the current line. | | | Colon Commands | | | | :!command | Executes a shell command. | | | : q | Quits the editor. | | | :q! | Quits without saving changes. | | | :r filename | Reads the file and inserts it after the current line. | | | :w filename | Writes a buffer to the file. | | | :wq | Saves changes and exits. | | | Search Text | | | | /string | Searches forward for a string. | | | ?string | Searches backward for a string. | | | Miscellaneous | | | | u | Undoes the last command. | | | Esc | Ends input mode and enters visual command mode. | | | U | Undoes recent changes to the current line. | | Book II Chapter 6 **Using Text Editors** # **Book III Networking** # Contents at a Glance | Chapter 1: Connecting to the Internet | | | |--|-----|--| | Understanding the Internet | 153 | | | Deciding How to Connect to the Internet | | | | Connecting with DSL | | | | Connecting with a Cable Modem | 161 | | | Chapter 2: Setting Up a Local Area Network | | | | Understanding TCP/IP | 167 | | | Setting Up an Ethernet LAN | 172 | | | Configuring TCP/IP Networking | 175 | | | Connecting Your LAN to the Internet | 177 | | | Chapter 3: Going Wireless | | | | Understanding Wireless Ethernet Networks | 179 | | | Setting Up Wireless Hardware | 183 | | | Configuring the Wireless Access Point | | | | Configuring Wireless Networking | | | | Chapter 4: Managing the Network | 189 | | | Discovering the TCP/IP Configuration Files | | | | Checking Out TCP/IP Networks | 193 | | | Configuring Networks at Boot Time | | | # Chapter 1: Connecting to the Internet #### In This Chapter - **✓** Understanding the Internet - **✓** Deciding how to connect to the Internet - ✓ Connecting to the Internet with DSL - **✓** Connecting to the Internet with a cable modem Fiven the prevalence and popularity of the Internet, it's a safe bet to assume that you want to connect your Linux system to the Internet. In this chapter, I show you how to connect to the Internet in several ways — depending on whether you have a DSL or cable modem. There are still some who connect using a dial-up network connection, but those are few and far between these days; most users aren't comfortable with the slower performance of a dial-up connection. Two of the options for connecting to the Internet — DSL and cable modem — involve attaching a special modem to an Ethernet card on your Linux system. In these cases, you have to set up Ethernet networking on your Linux system. (I explain networking in Chapter 2 of this minibook.) If your machine is nothing more than a client on a network that it connects to via a mobile/Wi-Fi connection, and not needing its own dedicated connection, then thinks couldn't be easier and you'll simply want to skim what is here before moving on to subsequent chapters. # Understanding the Internet How you view the Internet depends on your perspective. Most people see the Internet in terms of the services they use. For example, as a user, you might think of the Internet as an information-exchange medium with features such as - ◆ E-mail: Send e-mail to any other user on the Internet, using addresses such as mom@home.net. - Web: Download and view documents from millions of servers throughout the Internet. - ♦ Newsgroups: Read newsgroups and post news items to newsgroups with names such as comp.os.linux.networking or comp.os.linux. setup. - ♦ **Information sharing:** Download software, music files, videos, and so on. Reciprocally, you may provide files that users on other systems can download. - ◆ Remote access: Log in to another computer on the Internet, assuming that you have access to that remote computer. The techies say that the Internet is a worldwide *network of networks*. The term internet (without capitalization) is a shortened form of internetworking — the interconnection of networks. The Internet Protocol (IP) was designed with the idea of connecting many separate networks. In terms of physical connections, the Internet is similar to a network of highways and roads. This similarity is what has prompted the popular press to dub the Internet "the Information Superhighway." Just as the network of highways and roads includes some interstate highways, many state roads, and many more residential streets, the Internet has some very high-capacity networks (for example, a 10-Gbps backbone can handle 10 billion bits per second) and a large number of lower-capacity networks ranging from 56 Kbps dial-up connections to 45-Mbps T3 links. (Kbps is thousand-bits-per-second, and *Mbps* is million-bits-per-second.) The
high-capacity network is the backbone of the Internet. In terms of management, the Internet isn't run by a single organization, nor is it managed by any central computer. You can view the physical Internet as a *network of networks* managed collectively by thousands of cooperating organizations. Yes, a collection of networks managed by thousands of organizations — sounds amazing, but it works! # Deciding How to Connect to the Internet So you want to connect your Linux workstation to the Internet, but you don't know how? Let me count the ways. Nowadays you have three popular options for connecting homes and small offices to the Internet (huge corporations and governments have many other ways to connect): ◆ **Digital Subscriber Line (DSL):** Your local telephone company, as well as other telecommunications companies, may offer DSL. DSL provides a way to send high-speed digital data over a regular phone line. Typically, DSL offers data transfer rates of between 128 Kbps and 3.0 Mbps (usually, the higher the speed, the more you pay). You can often download from the Internet at much higher rates than when you send data from your PC to the Internet (upload). One caveat with DSL is that your home must be between 15,000 and 20,000 feet from your local central office (the DSL provider's facility where your phone lines end up). The distance limitation varies from provider to provider. In the United States, you can check out the distance limits for many providers at www.dslreports. com/distance. ◆ Cable modem: If the cable television company in your area offers Internet access over cable, you can use that service to hook up your Linux system to the Internet. Typically, cable modems offer higher data-transfer rates than DSL — for about the same cost. Downloading data from the Internet via cable modem is much faster than sending data from your PC to the Internet. You can expect routine download speeds of 12 Mbps and upload speeds of around 2 Mbps, but sometimes you may get even higher speeds than these. DSL and cable modem services connect you to the Internet and also act as your Internet service provider (ISP). In addition to improved speed, what you're paying for is an IP address and your e-mail accounts. Table 1-1 summarizes these options and compares/contrasts them to the dial-up connectivity you want to avoid wherever possible. You can consult that table and select the type of connection that's available to you and that best suits your needs. | Table 1-1 | Comparison of Dial-up, DSL, and Cable | | | | |------------------|---|---|---|--| | Feature | Dial-up | DSL | Cable | | | Equipment | Modem | DSL modem,
Ethernet card | Cable modem,
Ethernet card | | | Also
requires | Phone service
and an Internet
service provider
(ISP) | Phone service
and location
within 15,000 to
20,000 feet of
central office | Cable TV connection | | | Connection type | Dial to connect | Always on,
dedicated | Always on,
shared | | | Typical
speed | 56 Kbps
maximum | 1.5 Mbps down-
load, 128 Kbps
upload | 12 Mbps down-
load, 2 Mbps
upload (higher
speeds cost
more) | | Book III Chapter 1 > Connecting to the Internet Besides the three options shown in Table 1-1, a few other less common options may be available to you. These include fiber-to-the-home (FTTH), broadband over power lines (BPL), fixed wireless broadband (called FWB or WiMAX), and satellite Internet access (for example, DIRECWAY and StarBand). If you have one or more of these options available in your geographic area and you want to use one of them for Internet access, follow the specific service provider's instructions for setting up the Internet connection. Typically, satellite Internet access is available across large geographical regions (even places that don't have phone or cable), but the initial equipment cost and monthly fees are higher than for DSL and cable. # Connecting with DSL DSL stands for Digital Subscriber Line. DSL uses your existing phone line to send digital data in addition to the normal analog voice signals (analog means continuously varying, whereas digital data is represented by 1s and 0s). The phone line goes from your home to a central office, where the line connects to the DSL provider's network. By the way, the connection from your home to the central office is called the *local loop*. When you sign up for DSL service, the DSL provider hooks up your phone line to some special equipment at the central office. That equipment can separate the digital data from voice. From then on, your phone line can carry digital data that is then directly sent to an Internet connection at the central office. #### How DSL works A special box called a *DSL modem* takes care of sending digital data from your PC to the DSL provider's central office over your phone line. Your PC can connect to the Internet with the same phone line that you use for your normal telephone calls — you can make voice calls even as the line is being used for DSL. Figure 1-1 shows a typical DSL connection to the Internet. Your PC talks to the DSL modem through an Ethernet connection, which means that you need an Ethernet card in your Linux system. Your PC sends digital data over the Ethernet connection to the DSL modem. The DSL modem sends the digital data at different frequencies than those used by the analog voice signals. The voice signals occupy a small portion of all the frequencies that the phone line can carry. DSL uses the higher frequencies to transfer digital data, so both voice and data can travel on the same phone line. # DSL alphabet soup: ADSL, IDSL, SDSL I have been using the term *DSL* as if there were only one kind of DSL, but DSL has three variants, each with different features. Take a look: - ♦ ADSL: Asymmetric DSL is the most common form of DSL and has much higher download speeds (from the Internet to your PC) than upload speeds (from your PC to the Internet). ADSL can have download speeds of up to 8 Mbps and upload speeds of up to 1 Mbps. ADSL works best when your location is within about two to two-and-a-half miles (12,000 feet) of the central office. ADSL service is priced according to the download and upload speeds you want. A popular form of ADSL, called G.lite, has a maximum download speed of 1.5 Mbps and a maximum upload speed of 512 Kbps. - ◆ IDSL: Short for ISDN DSL (ISDN is an older technology called Integrated Services Digital Network), IDSL is a special type of DSL that works at distances of up to five miles between your phone and the central office. The downside is that IDSL averages downstream (from the Internet to your PC) and upstream (from your PC to the Internet) speeds of around 144 Kbps comparable to what an old-fashioned modem could do over a dial-up connection. - ◆ **SDSL:** Symmetric DSL provides equal download and upload speeds of up to 2.0 Mbps. SDSL is priced according to the speed you want, with the higher speeds costing more. The closer your location is to the central office, the faster the connection you can get. DSL (and cable modem) speeds are typically specified by two numbers separated by a slash, such as 1500/384. The numbers refer to data-transfer speeds in kilobits per second (that is, thousands of bits per second, abbreviated Kbps). The first number is the download speed; the second, the upload. Thus, 1500/384 means you can expect to download from the Internet at a maximum rate of 1,500 Kbps (or 1.5 Mbps) and upload to the Internet at 384 Kbps. If your phone line's condition isn't perfect, you may not get these maximum rates — both ADSL and SDSL adjust the speeds to suit existing line conditions. Book III Chapter 1 Connecting to the Internet The price of DSL service depends on which variant — ADSL, IDSL, or SDSL — you select. For most home users, the primary choice is ADSL (or, more accurately, the G.lite form of ADSL) with transfer speed ratings of up to 9000/640. # Typical DSL setup To get DSL for your home or business, you have to contact a DSL provider. You can find many other DSL providers in addition to your phone company. No matter who provides the DSL service, some work has to be done at the central office — the place where your phone lines connect to the rest of the phone network. The work involves connecting your phone line to equipment that can work with the DSL modem at your home or office. The central office equipment and the DSL modem at your location can then do whatever magic is needed to send and receive digital data over your phone line. The distance between your home and the central office — the *loop length* — is a factor in DSL's performance. Unfortunately, the phone line can reliably carry the DSL signals over only a limited distance — typically three miles or less, which means that you can get DSL service only if your home (or office) is located within about three miles of the central office. Contact your DSL provider to verify. You may be able to check this availability on the web. Try typing into Google (www.google.com) the words **DSL availability** and then your provider's name. The search results will probably include a website where you can type in your phone number to find out if DSL is available for your home or office. If DSL is available, you can look for the types of service — ADSL versus SDSL — and the pricing. The price depends on what download and upload speeds you want. Sometimes phone companies offer a simple residential DSL (basically the G.lite form of ADSL) with a 1500/128 speed rating — meaning you can download at up to 1,500 Kbps and upload at 128 Kbps. Of course, these are the *maximums*, and your mileage may vary. After selecting the type of DSL service and provider you want, you can place an order and have the provider install the
necessary equipment at your home or office. Figure 1-2 shows a sample connection diagram for typical residential DSL service. Here are some key points to note in Figure 1-2: - Connect your DSL modem's data connection to the phone jack on a wall plate. - ◆ Connect the DSL modem's Ethernet connection to the Ethernet card on your PC. ♦ When you connect other telephones or fax machines on the same phone line, install a microfilter between the wall plate and each of these devices. Because the same phone line carries both voice signals and DSL data, you need the microfilter to protect the DSL data from possible interference. You can buy these filters at electronics stores or from the DSL provider. Figure 1-2: You can connect a PC's Ethernet card directly to the DSL modem. When you connect your Linux PC to the Internet using DSL, the connection is always on, which means a greater potential for outsiders to break into the PC. You can protect your Linux system from intruders and, as a bonus, share the high-speed connection with other PCs in a local area network (LAN) by using a router that can perform Network Address Translation (NAT). A NAT router translates multiple private Internet Protocol (IP) addresses from an internal LAN into a single public IP address, which allows all the internal PCs to access the Internet. The NAT router acts as a gateway between your LAN and the Internet, and it isolates your LAN from the Internet — this makes it harder for intruders to reach the systems on your LAN. If you also want to set up a local area network, you need an Ethernet hub or switch to connect the other PCs to the network. Figure 1-3 shows a typical setup that connects a LAN to the Internet through a NAT router and a DSL modem. Book III Chapter 1 Connecting to the Internet Here are the points to note when setting up a connection like the one shown in Figure 1-3: - ◆ You need a NAT router with two 100BaseT or 10BaseT Ethernet ports (the 100BaseT and 10BaseT ports look like large phone jacks; they're also known as *RJ-45 jacks*). Typically, one Ethernet port is labeled *Internet* (or *External* or *WAN*, for wide area network), and the other one is labeled *Local* or *LAN* (for local area network). - ◆ You also need an Ethernet hub/switch. For a small home network, you can buy a 4- or 8-port Ethernet hub. Basically, you want a hub with as many ports as the number of PCs you intend to connect to your local area network. For a business, you'll want to replace the hub with a switch. - ◆ Connect the Ethernet port of the DSL modem to the Internet port of the NAT router, using a 100BaseT Ethernet cable. (These look like phone wires with bigger RJ-45 jacks and are often labeled *Category 5* or *Cat 5* wire.) - ◆ Connect the Local Ethernet port of the NAT router to one of the ports on the Ethernet hub/switch, using a 100BaseT Ethernet cable. - ♦ Now connect each of the PCs to the Ethernet hub/switch. (To do so, you must first have an Ethernet card installed and configured in each PC.) You can also buy a NAT router with a built-in 4-port or 8-port Ethernet hub. With such a combined router and hub, you need only one box to set up a LAN and connect it to the Internet via a DSL modem. These boxes are typically sold under the name *Cable/DSL router* because they work with both DSL and a cable modem. Consult Chapter 2 of this minibook for information on how to configure networking on the Linux system so that your system can access the Internet. DSL providers typically use a protocol known as *PPP over Ethernet (PPPoE)* to establish a connection between your PC and the equipment at the provider's central office. PPPoE requires you to provide a username and password to establish the network connection over Ethernet. To set up your system for a PPPoE DSL connection, all you have to do is run a utility program that configures the system for PPPoE. You can find the utility by searching in the main menu in the GUI desktop. In Ubuntu, you can set up a PPPoE DSL connection by choosing Systemes Administration Network Tools, clicking the modem connection, and choosing Properties. Then go through the successive screens and provide the requested account information, such as username and password. # Connecting with a Cable Modem Cable TV companies also offer high-speed Internet access over the same coaxial cable that carries television signals to your home. After the cable company installs the necessary equipment at its facility to send and receive digital data over the coaxial cables, customers can sign up for cable Internet service. You can then get high-speed Internet access over the same line that delivers cable TV signals to your home. #### How a cable modem works A box called a *cable modem* is at the heart of Internet access over the cable TV network. (See Figure 1-4.) The cable modem takes digital data from your PC's Ethernet card and puts it in an unused block of frequency. (Think of this frequency as another TV channel, but instead of pictures and sound, this channel carries digital data.) The cable modem places *upstream data* — data that's being sent from your PC to the Internet — in a different channel from that of the *downstream* data that's coming from the Internet to your PC. By design, the speed of downstream data transfers is much higher than that of upstream transfers. The assumption is that people download far more stuff from the Internet than they upload (which is probably true for most of us). Book III Chapter 1 Connecting to the Internet The coaxial cable that carries all those hundreds of cable TV channels to your home is a very capable signal carrier. In particular, the coaxial cable can carry signals covering a huge range of frequencies — hundreds of megahertz (MHz). Each TV channel requires 6 MHz — and the coaxial cable can carry hundreds of such channels. The cable modem places the upstream data in a small frequency band and expects to receive the downstream data in another frequency band. At the other end of your cable connection to the Internet is the *Cable Modem Termination System* (CMTS) — also known as the *head end* — that your cable company installs at its central facility. (Refer to Figure 1-4.) The CMTS connects the cable TV network to the Internet. It also extracts the upstream digital data sent by your cable modem (and by those of your neighbors as well) and sends it to the Internet. The CMTS also puts digital data into the upstream channels so that your cable modem can extract that data and provide it to your PC via the Ethernet card. Cable modems can receive downstream data at the rate of about 50 Mbps and send data upstream at around 10 Mbps. However, all the cable modems in a neighborhood share the same downstream capacity. Each cable modem filters out — separates — the data it needs from the stream of data that the CMTS sends out. Cable modems follow a modem standard called DOCSIS, which stands for Data Over Cable Service Interface. You can buy any DOCSIS-compliant modem and use it with your cable Internet service; all you have to do is call the people at the cable company and give them the modem's identifying information so that the CMTS can recognize and initialize the modem. In practice, with a cable modem, you'll most likely get downstream transfer rates of around 12 Mbps and upstream rates of 2 Mbps. These are maximum rates; your actual transfer rate is typically lower, depending on how many people in your neighborhood are using cable modems at the same time. If you want to check your downstream transfer speed, go to http://bandwidthplace.com/speedtest and click the link to start the test. For my cable modem connection, for example, a recent test reported a downstream transfer rate of about 2.2 Mbps, but at other times the rate has been as high as 5.2 Mbps. ## Typical cable modem setup To set up cable modem access, your cable TV provider must offer high-speed Internet access. If the service is available, you can call to sign up. The cable companies often have promotional offers, such as no installation fee or a reduced rate for three months. If you're lucky, a local cable company may have a promotion going on just when you want to sign up. The installation is typically performed by a technician, who splits your incoming cable into two — one side goes to the TV and the other to the cable modem. The technician provides information about the cable modem to the cable company's head end for setup at its end. When that work is completed, you can plug in your PC's Ethernet card to the cable modem, and you'll be all set to enjoy high-speed Internet access. Figure 1-5 shows a typical cable modem hookup. The cable modem connects to an Ethernet card in your PC. If you don't have an Ethernet card in your PC, the cable company technician often provides one. Book III Chapter 1 Connecting to the Internet Here are some key points to note about the cable modem setup in Figure 1-5: ◆ Split the incoming cable TV signal into two parts by using a two-way splitter. (The cable company technician installs the splitter.) The two-way splitter needs to be rated for 1 GHz; otherwise it may not let the frequencies that contain the downstream data from the Internet pass through. - ◆ Connect one of the video outputs from the splitter to your cable modem's F-type video connector, using a coaxial cable. - ◆ Connect the cable modem's 100BaseT Ethernet connection to the Ethernet card on your PC. - ◆ Connect your TV to the other video output from the two-way splitter. When you use cable modem to connect your Linux PC directly to the Internet, the connection is always on, so you have more of a chance that someone may try to break into the PC. Linux includes the iptables packet filtering capability, which you may want to use to protect your PC from unwanted Internet connections. To isolate your Linux PC or local area network from the public Internet, you may want to add a NAT router between your PC and the cable modem. One of the NAT
router's network interfaces connects to the Internet, and the other connects to your LAN; the router then acts as a gateway between your LAN and the Internet. As a bonus, you can even share a cable modem connection with all the PCs in your own local area network (LAN) by adding an Ethernet hub. Better yet, buy a combination NAT router and hub so you have only one box to do the entire job. a LAN. Boxes that combine NAT router and hub are typically sold under the name cable/DSL router because they work with both DSL and cable modem. The NAT router translates private IP addresses into a public IP address. When connected through a NAT router, any PC in the internal LAN can access the Internet as if it had its own unique IP address. As a result, you can share a single Internet connection among many PCs — an ideal solution for a family of Net surfers! Figure 1-6 shows a typical setup with a cable modem connection being shared by a number of PCs in a LAN. **Book III** Chapter 1 Connecting to the Internet Here are the points to note when setting up a connection like the one shown in Figure 1-6: - ◆ You need a cable/DSL NAT router with two 100BaseT Ethernet ports (the 100BaseT port — also known as an RJ-45 jack, which looks like a large phone jack). Typically, one Ethernet port is labeled *Internet* (or *External* or WAN, for wide area network), and the other one is labeled Local. - ◆ If you plan to set up a LAN, you also need an Ethernet hub/switch. For a small home network, you can buy a 4- or 8-port Ethernet hub. Basically, you want a hub with as many ports as the number of PCs you intend to connect to your local area network. - ◆ Consider buying a single box that acts as both a NAT router and a hub with a number of Ethernet ports. - ◆ Connect the video cable to the video input port of the cable modem. - ◆ Connect the Ethernet port of the cable modem to the Internet port of the NAT router using a 100BaseT Ethernet cable. (The cable looks like a phone wire except that the Ethernet cable has bigger RJ-45 jacks and is often labeled *Category 5* or *Cat 5 wire*.) - ◆ Connect the Local Ethernet port of the NAT router to one of the ports on the Ethernet hub, using a 100BaseT Ethernet cable. - Now connect each of the PCs to the Ethernet hub. Each PC must have an Ethernet card. In Chapter 2 of this minibook, I explain how to configure the PCs in a LAN so that they can all access the Internet through the router. # Chapter 2: Setting Up a Local Area Network #### In This Chapter - ✓ Understanding TCP/IP networks - ✓ Setting up an Ethernet local area network - ✓ Discovering how to configure TCP/IP networking - Connecting a LAN to the Internet inux comes with built-in support for Transmission Control Protocol/ Internet Protocol (TCP/IP) networking, as do most modern operating systems from Windows to Mac OS. You can have TCP/IP networking over many different physical interfaces, such as Ethernet cards, serial ports, and parallel ports. Typically, you use an Ethernet network for your local area network (LAN) — at your office or even your home (if you happen to have two or more systems at home) — with wireless (the subject of the next chapter) gaining in popularity in most locations. This chapter describes how to set up an Ethernet network. Even if you have a single PC, you may need to set up an Ethernet network interface so that you can connect to high-speed Internet access (that uses a DSL or cable modem somewhere along the way.) # **Understanding TCP/IP** You can understand TCP/IP networking best if you think in terms of a four-layer model, with each layer responsible for performing a particular task. The layered model describes the flow of data between the physical connection to the network and the end-user application. Figure 2-1 shows the four-layer network model for TCP/IP. In this four-layer model, information always moves from one layer to the next. For example, when an application sends data to another application, the data goes through the layers in this order: application transport network physical. At the receiving end, the data goes up from physical network transport application. Figure 2-1: You can understand TCP/IP using the four-layer network model. Each layer has its own set of *protocols* — conventions — for handling and formatting the data. If you think of sending data as something akin to sending letters through the postal service, a typical protocol is a preferred sequence of actions for a task, such as addressing an envelope (first the name, then the street address, and then the city, state, and zip or other postal code). These four layers, depending on what reference you look at, might have different names. For example, if you look at the old DOD model, the transport is called host-to-host, network is called internetwork or Internet, application is process/application, and physical is network access. Here's what each of the four layers does, top to bottom: - ◆ Application: Runs the applications that users use, such as e-mail readers, file transfers, and web browsers. Application-level protocols are Simple Mail Transfer Protocol (SMTP) and Post Office Protocol (POP) for e-mail, HyperText Transfer Protocol (HTTP) for the web, and File Transfer Protocol (FTP) for file transfers. Application-level protocols also have a port number that you can think of as an identifier for a specific application. For example, port 80 is associated with HTTP or the web server. - ◆ Transport: Sends data from one application to another. The two most important protocols in this layer are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP guarantees delivery of data; UDP just sends the data without ensuring that it actually reaches the destination. - ◆ **Network:** This layer is responsible for getting data packets from one network to another. If the networks are far apart, the data packets are routed from one network to the next until they reach their destination. The primary protocol in this layer is the Internet Protocol (IP). - Physical: Refers to the physical networking hardware (such as an Ethernet card or token ring card) that carries the data packets in a network. # TCP/IP and the Internet TCP/IP has become the protocol of choice on the Internet — the network of networks that evolved from ARPANET. The U.S. Government's Advanced Research Projects Agency (ARPA) initiated research in the 1970s on a new way of sending information, using packets of data sent over a network. The result was ARPANET: a national network of linked computers. Subsequently, ARPA acquired a Defense prefix and became DARPA. Under the auspices of DARPA, the TCP/IP protocols emerged as a popular collection of protocols for *internetworking* — communication among networks. TCP/IP has flourished because the protocol is *open*. That means the technical descriptions of the protocol appear in public documents, so anyone can implement TCP/IP on specific hardware and software. The beauty of the layered model is that each layer takes care of only its specific task, leaving the rest to the other layers. The layers can mix and match — you can have TCP/IP network over any type of physical network medium, from Ethernet to radio waves (in a wireless network). The software is modular as well; each layer can be implemented in different modules. For example, typically the transport and network layers already exist as part of the operating system, and any application can make use of these layers. TCP/IP also made great inroads because stable, working software was available. Instead of a paper description of network architecture and protocols, the TCP/IP protocols started out as working software — and who can argue with what's already working? These days, as a result, TCP/IP rules the Internet. #### IP addresses When you have many computers on a network, you need a way to identify each one uniquely. In TCP/IP networking, the address of a computer is the IP address. Because TCP/IP deals with internetworking, the address is based on the concepts of a network address and a host address. You may think of the idea of a network address and a host address as having to provide two addresses to identify a computer uniquely: - ◆ **Network address** indicates the network on which the computer is located. - ♦ Host address indicates a specific computer on that network. The network and host addresses together constitute an *IP address*, and it's a 4-byte (32-bit) value. The convention is to write each byte as a decimal value and to put a dot (.) after each number. Thus you see network addresses such as 132.250.112.52. This way of writing IP addresses is known as *dotted-decimal* or *dotted-quad* notation. Book III Chapter 2 > Setting Up a Local Area Network # What about IP (IPv6)? When the 4-byte IP address was created, the number of available addresses seemed adequate. Now, however, the 4-byte addresses are running out. The Internet Engineering Task Force (IETF) recognized the potential for running out of IP addresses in 1991 and began work on the next-generation IP addressing scheme. They called it IPng (for Internet Protocol Next Generation) and intended for it to eventually replace the old 4-byte addressing scheme (called IPv4, for IP version 4). Several alternative addressing schemes for IPng were proposed and debated. The final contender, with a 128-bit (16-byte) address, was dubbed IPv6 (for IP version 6). On September 18, 1995, the IETF declared the core set of IPv6 addressing protocols to be an IETF Proposed Standard. By now, there are many RFCs (Request for Comments) dealing with various aspects of IPv6, from IPv6 over PPP for the transmission of IPv6 packets over Ethernet. IPv6 is designed to be an evolutionary step from IPv4. The proposed standard provides direct interoperability between hosts using the older IPv4 addresses and any new IPv6 hosts. The idea is that users can upgrade their systems to use IPv6 when they want and that network operators are
free to upgrade their network hardware to use IPv6 without affecting current users of IPv4. Sample implementations of IPv6 are being developed for many operating systems, including Linux. For more information about IPv6 in Linux, consult the Linux IPv6 HOWTO at www.tldp.org/ HOWTO/Linux+IPv6-HOWTO. For information about IPv6 in general, visit the IPv6 home page at www.ipv6.org. The IPv6 128-bit addressing scheme allows for a total of 2¹²⁸ or 340,282,366,920,938,463,463,37 4,607,431,768,211,456 theoretically assignable addresses. That should last us for a while! In decimal notation, a byte (which has 8 bits) can have a value between 0 and 255. Thus a valid IP address can use only the numbers between 0 and 255 in the dotted-decimal notation. ## Internet services and port numbers The TCP/IP protocol suite has become the lingua franca of the Internet because many standard services are available on any system that supports TCP/IP. These services make the Internet tick by facilitating the transfer of mail, news, and web pages. These services go by well-known names such as the following: - ◆ DHCP (Dynamic Host Configuration Protocol) is for dynamically configuring TCP/IP network parameters on a computer. DHCP is primarily used to assign dynamic IP addresses and other networking information (such as name server, default gateway, and domain names) needed to configure TCP/IP networks. The DHCP server listens on port 67. - ◆ FTP (File Transfer Protocol) is used to transfer files between computers on the Internet. FTP uses two ports data is transferred on port 20, and control information is exchanged on port 21. - ◆ **DNS** (Domain Name System) is used to translate domain names into IP addresses. This service runs on port 53. - ◆ HTTP (HyperText Transfer Protocol) is a protocol for sending documents from one system to another. HTTP is the underlying protocol of the World Wide Web. By default, the web server and client communicate on port 80. When combined with SSL/TLS, the protocol becomes HTTPS and the port changes to 443. - ◆ **SMTP** (Simple Mail Transfer Protocol) is for exchanging e-mail messages between systems. SMTP uses port 25 for information exchange. - ◆ **POP3** (Post Office Protocol version 3) is used by the client to receive mail and it uses port 110. When combined with SSL/TLS for security, the port changes to 995. - ◆ IMAP (Internet Message Access Protocol) can also be used by clients to interact with mail (in place of POP3) and it uses port 143. When combined with SSL/TLS for security, the port changes to 993. - ◆ NNTP (Network News Transfer Protocol) is for distribution of news articles in a store-and-forward fashion across the Internet. NNTP uses port 119. - ♦ NetBIOS is used by Windows for networking and it utilizes a number of ports, the most common of which is 139 which is used for the session. - ◆ **SSH** (Secure Shell) is a protocol for secure remote login and other secure network services over an insecure network. SSH uses port 22. - ◆ TELNET is used when a user on one system logs in to another system on the Internet. (The user must provide a valid user ID and password to log in to the remote system.) TELNET uses port 23 by default, but the TELNET client can connect to any port. - ◆ SNMP (Simple Network Management Protocol) is for managing all types of network devices on the Internet. Like FTP, SNMP uses two ports: 161 and 162. - **♦ Rendezvous Directory Service** (used by Cisco) uses port 465. - ◆ **TFTP** (Trivial File Transfer Protocol) is for transferring files from one system to another. (It's typically used by X terminals and diskless workstations to download boot files from another host on the network.) TFTP data transfer takes place on port 69. - ◆ NFS (Network File System) is for sharing files among computers. NFS uses Sun's Remote Procedure Call (RPC) facility, which exchanges information through port 111. A well-known port is associated with each of these services. The TCP protocol uses each such port to locate a service on any system. (A *server process* — a special computer program running on a system — provides each service.) Book III Chapter 2 > Setting Up a Local Area Network # Setting Up an Ethernet LAN Ethernet is a standard way to move packets of data between two or more computers connected to a single hub, router, or switch. (You can create larger networks by connecting multiple Ethernet segments with gateways.) To set up an Ethernet LAN, you need an Ethernet card for each PC. Linux supports a wide variety of Ethernet cards for the PC. Ethernet is a good choice for the physical data-transport mechanism for the following reasons: - ♦ Ethernet is a proven technology that has been in use since the early 1980s. - ◆ Ethernet provides good data-transfer rates: typically 10 million bits per second (10 Mbps), although 100-Mbps Ethernet and Gigabit Ethernet (1,000 Mbps) are now common. - ◆ Ethernet hardware is often built into the PC or can be installed at a relatively low cost. (PC Ethernet cards cost about \$10–20.) - ♦ With wireless Ethernet, you can easily connect laptop PCs to your Ethernet LAN without having to run wires all over the place. (Go to Chapter 3 of this minibook for more information on wireless Ethernet.) #### How Ethernet works So what makes Ethernet tick? In essence, it's the same thing that makes any conversation work: listening and taking turns. In an Ethernet network, all systems in a segment are connected to the same wire. A protocol is used for sending and receiving data because only one data packet can exist on the single wire at any time. An Ethernet LAN uses a data-transmission protocol known as Carrier-Sense Multiple Access/Collision Detection (CSMA/CD) to share the single transmission cable among all the computers. Ethernet cards in the computers follow the CSMA/CD protocol to transmit and receive Ethernet packets. The idea behind the CSMA/CD protocol is similar to the way in which you have a conversation at a party. You listen for a pause (that's sensing the carrier) and talk when no one else is speaking. If you and another person begin talking at the same time, both of you realize the problem (that's collision detection) and pause for a moment; then one of you starts speaking again. As you know from experience, everything works out. In an Ethernet LAN, each Ethernet card checks the cable for signals — that's the carrier-sense part. If the signal level is low, the Ethernet card sends its packets on the cable; the packet contains information about the sender and the intended recipient. All Ethernet cards on the LAN listen to the signal, and the recipient receives the packet. If two cards send out a packet simultaneously, the signal level in the cable rises above a threshold, and the cards know a collision has occurred. (Two packets have been sent out at the same time.) Both cards wait for a random amount of time before sending their packets again. Ethernet was invented in the early 1970s at the Xerox Palo Alto Research Center (PARC) by Robert M. Metcalfe. In the 1980s, Ethernet was standardized by the cooperative effort of three companies: Digital Equipment Corporation (DEC), Intel, and Xerox. Using the first initials of the company names, that Ethernet standard became known as the DIX standard. Later, the DIX standard was included in the 802-series standards developed by the Institute of Electrical and Electronics Engineers (IEEE). The final Ethernet specification is formally known as IEEE 802.3 CSMA/CD, but people continue to call it *Ethernet*. Ethernet sends data in *packets* (discrete chunks also known as *frames*). You don't have to hassle much with the innards of Ethernet packets, except to note the 6-byte source and destination addresses. Each Ethernet controller has a unique 6-byte (48-bit) address at the physical layer; every packet must have one. #### Ethernet cables Any time you hear experts talking about Ethernet, you'll also hear some bewildering terms used for the cables that carry the data. Here's a quick rundown. The original Ethernet standard used a thick coaxial cable, nearly half an inch in diameter. This wiring is called *thicknet, thickwire*, or just *thick Ethernet* although the IEEE 802.3 standard calls it *10Base5*. That designation means several things: The data-transmission rate is 10 megabits per second (10 Mbps); the transmission is *baseband* (which simply means that the cable's signal-carrying capacity is devoted to transmitting Ethernet packets only), and the total length of the cable can be no more than 500 meters. Thickwire was expensive, and the cable was rather unwieldy. Unless you're a technology history buff, you don't have to care one whit about 10Base5 cables. Nowadays, several other forms of Ethernet cabling are more popular. An alternative to thick Ethernet cable is *thinwire*, or 10Base2, which uses a thin, flexible coaxial cable. A thinwire Ethernet segment can be, at most, 185 meters long. The other, more recent, alternative is Ethernet over unshielded twisted-pair cable (UTP), known as 10BaseT. More recent Ethernet cabling options that support higher transmission rates include 100BaseT4, 100BaseT2, and 100BaseTX for 100-Mbps Ethernet and 1000BaseT for Gigabit Ethernet. The Electronic Industries Association/Telecommunications Industries Association (EIA/TIA) defines the following five categories of shielded and unshielded twisted-pair cables: - **♦ Category 1 (Cat 1):** Traditional telephone cable. - ◆ Category 2 (Cat 2): Cable certified for data transmissions up to 4 Mbps. Book III Chapter 2 > Setting Up a Local Area Network - ◆ Category 3 (Cat 3): Cable that can carry signals up to a frequency of 16 MHz. Cat 3 is the most common type of wiring in old corporate networks, and it normally contains four pairs of wire. Now considered obsolete. - Category 4 (Cat 4): Cable that can carry signals up to a frequency of 20 MHz. Cat 4 wires aren't common. Now considered obsolete. - ◆ Category 5 (Cat 5): Cable that can
carry signals up to a frequency of 100 MHz. Cat 5 cables normally have four pairs of copper wire. Cat 5 UTP is the most popular cable used in new installations today. This category of cable is being superseded by Category 5e (enhanced Cat 5). - ◆ Category 5e (Cat 5e): Similar to Cat 5 but with improved technical parameters, such as near-end cross talk and attenuation. Cat 5e cables support 10BaseT, 100BaseT4, 100BaseT2, and 100BaseTX and 1000BaseT Ethernet. Nowadays, Cat 5e is the minimum acceptable wiring. - ◆ Category 6 (Cat 6): Similar to Cat 5e but capable of carrying signals up to a frequency of 250 MHz. Cat 6 cables can support all existing Ethernet standards and also support Gigabit Ethernet standard 1000BaseTX, which uses two pairs of wires in each direction (as opposed to all four pairs for 1000BaseT Ethernet over Cat 5e cables). To set up a 10BaseT or 100BaseT Ethernet network, you need an Ethernet hub — a hardware box with RJ-45 jacks. (This type of jack looks like a big telephone jack.) You build the network by running twisted-pair wires (usually Category 5 cables) from each PC's Ethernet card to this hub. You can get a 4-port 10BaseT/100BaseT hub for about \$40. Figure 2-2 shows a typical small 10BaseT/100BaseT Ethernet LAN that you may set up at a small office or your home. When you install any of the Linux distributions from this book's companion DVD-ROM on a PC connected with an Ethernet card, the Linux kernel automatically detects the Ethernet card and installs the appropriate drivers. The installer also lets you set up TCP/IP networking. The Linux kernel loads the driver for the Ethernet card every time it boots. To verify that the Ethernet driver is loaded, type the following command in a terminal window: ``` dmesq | grep eth0 ``` On one of my Linux PCs, I get the following output when I type that command: ``` eth0: RealTek RTL8139 at 0xf0e20000, 00:0c:76:f4:38:b3, IRO 161 eth0: Identified 8139 chip type 'RTL-8101' eth0: link up, 100Mbps, full-duplex, lpa 0x45E1 eth0: no IPv6 routers present ``` You should see something similar, showing the name of your Ethernet card and other related information. # Configuring TCP/IP Networking When you set up TCP/IP networking during Linux installation, the installation program prepares all appropriate configuration files using the information you provide. This means that you typically never have to manually configure the network. However, most Linux distributions come with GUI tools to configure the network devices, just in case something needs changing. For all distributions, the steps are similar. In Ubuntu, for example, you can use the graphical network configuration tool. To start the GUI network configuration tool, choose System Settings Network. The network configuration tool displays a dialog box, as shown in Figure 2-3. You can then configure your network through the choices that appear in the dialog box including settings for wired and wireless. The Airplane Mode toggle makes it convenient to temporarily disable the network. Clicking the Options button displays a dialog box similar to the one shown in Figure 2-4. From here, you can configure everything from the security to the settings for the each protocol to use. On the General tab (shown in Figure 2-5), you can configure whether the connection will always try to be established — and whether all users can use the network. Book III Chapter 2 > Setting Up a Local Area Network 🔞 🖨 📵 Editing Wired connection 1 Figure 2-3: Move through the dialog box choices to configure the connection. | General Ethernet 80 | 2.1x Security IPv4 Setti | ngs I | Pv6 | Setting | |---------------------|----------------------------|-------|-----|---------| | Device MAC address: | A0:B3:CC:F8:DB:01 (eth | 0) | | • | | Cloned MAC address: | | | | | | MTU: | automatic | - | + | byte | Figure 2-4: The Options button allows you to configure your connections In most cases, you can set the network card so it can automatically obtain an IP address (which is the case when the Ethernet card is connected to DSL or cable modem) by using DHCP. If your network doesn't have a DHCP server (which is typically built into routers), you have to specify an IP address for the network card. If you are running a private network, you may use IP addresses in the 192.168.0.0 to 192.168.255.255 range. (Other ranges of addresses are reserved for private networks, but this range suffices for most needs.) Figure 2-5: The General tab allows you to configure the connection to always attempt to be available. # Connecting Your LAN to the Internet If you have a LAN with several PCs, you can connect the entire LAN to the Internet by using DSL or a cable modem. Basically, you can share the high-speed DSL or cable modem connection with all the PCs in the LAN. Chapter 1 of this minibook explains how to set up a DSL or cable modem. In this section, I briefly explain how to connect a LAN to the Internet so all the PCs can access the Internet. The most convenient way to connect a LAN to the Internet via DSL or cable modem is to buy a hardware device called *DSL/cable modem NAT router* with a 4- or 8-port Ethernet hub. NAT stands for Network Address Translation, and the NAT router can translate many private IP addresses into a single, externally known IP address. The Ethernet hub part appears to you as a number of RJ-45 Ethernet ports where you can connect the PCs to set up a LAN. In other words, you need only one extra box besides the DSL or cable modem. Figure 2-6 shows how you might connect your LAN to the Internet through a NAT router with a built-in Ethernet hub. You need a DSL or cable modem hookup for this scenario to work, and you have to sign up with a DSL provider (for DSL service) or with a cable provider for cable Internet service. When you connect a LAN to the Internet, the NAT router acts as a gateway for your LAN. The NAT router also dynamically provides IP addresses to the PCs in your LAN. Therefore, on each PC, you have to set up the networking options to obtain the IP address dynamically. Book III Chapter 2 > Setting Up a Local Area Network If you are using DSL and incurring speeds slower than you should (2 Mbps when it should be 5 Mbps, for example), try a different phone cord. Make sure that the phone cord that runs from the modem to the wall jack is no longer than 10 feet and does not go through a filter, surge protector, or splitter (which can attenuate the signal). All other phone devices (fax machines, for example) should go through a filter or surge protector. Your LAN can mix and match all kinds of computers: Some may be running Linux, and some may be running Microsoft Windows or any other operating system that supports TCP/IP. When configuring the network settings, remember to select the option that enables Linux to automatically obtain IP address settings and DNS information with DHCP. # Chapter 3: Going Wireless #### In This Chapter - ✓ Understanding the wireless Ethernet network - ✓ Setting up your wireless hardware - ✓ Finding out how to configure a wireless access point - Configuring a wireless network f you have laptop computers on your LAN — or if you don't want to run a rat's nest of wires to connect a PC to the LAN — you have the option of using a wireless Ethernet network. In a typical scenario, you have a cable modem or DSL connection to the Internet, and you want to connect one or more laptops with wireless network cards to access the Internet through the cable or DSL modem. This chapter shows you how to set up wireless networking for connecting to an Ethernet LAN and accessing the Internet. # **Understanding Wireless Ethernet Networks** You've probably heard about Wi-Fi. Wi-Fi stands for *Wireless Fidelity* — a short-range wireless network similar to wired Ethernet networks. A number of standards from an organization known as *IEEE* (the Institute of Electrical and Electronics Engineers) define the technical details of how Wi-Fi networks work. Manufacturers use these standards to build the components that you can buy to set up a *wireless local area network* (*WLAN* for short). The standard governing Wi-Fi networks has evolved swiftly. What started as 802.11a gave birth to 802.11b — and the two combined to make up 802.11g, which was superseded by 802.11n — but the purpose of every one of these standards was the same: to specify how the wireless Ethernet network works at the physical layer. You don't have to fret the details of all those standards to set up a wireless network, but knowing some pertinent details is good so that you can buy the right kind of equipment for your wireless network. The three wireless Ethernet standards you'll commonly encounter today have the following key characteristics: ◆ **802.11b:** Operates in the 2.4 GHz radio band (2.4 GHz to 2.4835 GHz) in up to three nonoverlapping frequency bands or channels. Supports a maximum bit rate of 11 Mbps per channel. One disadvantage of 802.11b is that the 2.4 GHz frequency band is crowded — many devices (such as microwave ovens, cordless phones, medical and scientific equipment, as well as Bluetooth devices), all work within the 2.4 GHz frequency band. Nevertheless, 802.11b is popular in corporate and home networks. - ◆ 802.11a: Operates in the 5 GHz radio band (5.725 GHz to 5.850 GHz) in up to eight nonoverlapping channels. Supports a maximum bit rate of 54 Mbps per channel. The 5 GHz band isn't as crowded as the 2.4 GHz band, but the 5 GHz band isn't approved for use in Europe. Products conforming to 802.11a standard are on the market, and some wireless access points are designed to handle both 802.11a and 802.11b connections. - ♦ 802.11g: Supports up to 54 Mbps data rate in the 2.4 GHz band (the same band that 802.11b uses). 802.11g achieves the higher bit rate by using a technology called *OFDM* (orthogonal frequency-division multiplexing), which is also used by 802.11a.
Equipment that complies with 802.11g is on the market. 802.11g has generated excitement by working in the same band as 802.11b but promising much higher data rates and by being backward-compatible with 802.11b devices. Vendors currently offer access points that can support both the 802.11b and 802.11g connection standards. In all cases, the maximum data throughput that a user sees is much less than the channel's total capacity because all users of that radio channel share this capacity. Also, the data-transfer rate decreases as the distance increases between the user's PC and the wireless access point. To play it safe, though, go with 802.11n with its supported data rates five times the existing throughput and double the range of previous standards. An 802.11g access point can also communicate with older (and slower) 802.11b devices. You can also consider a MIMO (multiple-input-multiple-output) access point, which supports multiple 802.11 standards and implements techniques for getting higher throughputs and better range. To find out more about wireless Ethernet, visit www.wi-fi.org, the home page of the Wi-Fi Alliance, which is the nonprofit international association formed in 1999 to certify interoperability of wireless LAN products based on IEEE 802.11 standards. ## Understanding infrastructure and ad hoc modes The 802.11 standard defines two modes of operation for wireless Ethernet networks: ad hoc and infrastructure. *Ad hoc mode* is simply two or more wireless Ethernet cards communicating with each other without an access point. *Infrastructure mode* refers to the approach in which all the wireless Ethernet cards communicate with each other and with the wired LAN through an access point. For the discussions in this chapter, I assume that you set your wireless Ethernet card to infrastructure mode. In the configuration files, this mode is referred to as *managed mode*. ## Understanding Wired Equivalent Privacy (WEP) The 802.11 standard includes Wired Equivalent Privacy (WEP) for protecting wireless communications from eavesdropping. WEP relies on a 40-bit or 104-bit secret key that's shared between a mobile station (such as a laptop with a wireless Ethernet card) and an access point (also called a base station). The secret key is used to encrypt data packets before they're transmitted, and an integrity check is performed to ensure that packets aren't modified in transit. The 802.11 standard doesn't explain how the shared key is established. In practice, most wireless LANs use a single key that's shared by all of its mobile stations and access points. Such an approach, however, doesn't scale up very well to an environment such as a college campus because the keys are shared with all users — and you know how it is if you share a *secret* with hundreds of people. That's why WEP typically isn't used on large wireless networks, such as the ones at universities. In such wireless networks, you have to use other security approaches, such as SSH (Secure Shell), to log in to remote systems. WEP, however, is good to use on a home wireless network. WEP has its weaknesses, but it's better than nothing. You can use it in smaller wireless LANs where sharing the same key among all wireless stations isn't an onerous task. Over a decade ago, the Wi-Fi Alliance published a specification called *Wi-Fi Protected Access* (WPA) that replaced the existing WEP standard and improved security by making some changes. For example, unlike WEP, which uses fixed keys, the WPA standard uses Temporal Key Integrity Protocol (TKIP), which generates new keys for every 10K of data transmitted over the network. This makes WPA more difficult to break. In 2004, the Wi-Fi Alliance introduced a follow-on to WPA called *Wi-Fi Protected Access 2* (WPA2 — the second generation of WPA security). WPA2 is based on the final IEEE 802.11i standard, which uses public key encryption with digital certificates and an authentication, authorization, and accounting RADIUS (Remote Authentication Dial-In User Service) server to provide better security for wireless Ethernet networks. WPA2 uses the Advanced Encryption Standard (AES) for data encryption. Book III Chapter 3 GOILLO MILET # Is the WEP stream cipher good enough? WEP uses the RC4 encryption algorithm, which is known as a *stream cipher*. Such an algorithm works by taking a short secret key and generating an infinite stream of pseudorandom bits. Before sending the data, the sending station performs an exclusive-OR operation between the pseudorandom bits and the bits representing the data packet, which results in a 1 when two bits are different and 0 if they are the same. The receiver has a copy of the same secret key and generates an identical stream of pseudorandom bits — and performs an identical exclusive-OR operation between this pseudorandom stream and the received bits. Doing so regenerates the original, unencrypted data packet. This stream-cipher method has a few problems. If a bit is flipped (from a 0 to 1 or vice versa) in the encrypted data stream, the corresponding bit is flipped in the decrypted output, which can help an attacker derive the encryption key. Also, an eavesdropper who intercepts two encoded messages that were encoded with the same stream can generate the exclusive-OR of the original messages. That knowledge is enough to mount attacks that can eventually break the encryption. To counter these weaknesses, WEP uses some defenses: - Integrity check (IC) field: To make sure that data packets aren't modified in transit, WEP uses an integrity-check field in each packet. - Initialization vector (IV): To avoid encrypting two messages with the same key stream, WEP uses a 24-bit IV that augments the shared secret key to produce a different RC4 key for each packet. The IV itself is also included in the packet. Experts say that both these defenses are poorly implemented, making WEP ineffective. IC and IV have two main problems: - ✓ The integrity-check field is implemented by using a checksum algorithm called 32-bit cyclic redundancy check (CRC-32); that checksum is then included as part of the data packet. Unfortunately, an attacker can flip arbitrary bits in an encrypted message and correctly adjust the checksum so that the resulting message appears valid. - ✓ The 24-bit IV is sent in the clear (unencrypted). There are only 224 possible initialization vectors (no big challenge for a fast machine), and they have to be reused after running through them all. In other words, the IV is repeated after sending 224, or 16.777.216, packets. The number may sound like a lot, but consider the case of a busy access point that sends 1,500-byte packets at a rate of 11 Mbps. Each packet has 12,000 bits (8 x 1,500). That means the access point sends 916 packets (11,000,000/12,000) each second. At that rate, the access point sends 16,777,216 packets in 5 hours (16,777,216/916 = 18,315 seconds = 5 hours).That means the IV is reused after 5 hours or less because many messages are smaller than 1,500 bytes. Thus an attacker has ample opportunities to collect two messages encrypted with the same key stream — and perform statistical attacks (which amount to trying the possible combinations really fast) to decrypt the message. # Setting Up Wireless Hardware To set up the wireless connection, you need a wireless access point and a wireless network card in each PC. You can also set up an ad hoc wireless network among two or more PCs with wireless network cards, but that is a standalone wireless LAN among those PCs only. In this section, I focus on the scenario in which you want to set up a wireless connection to an established LAN that has a wired Internet connection through a cable modem or DSL. In addition to the wireless access point, you also need a cable modem or DSL connection to the Internet, along with a NAT router and hub, as described in Chapters 1 and 2 of this minibook. Figure 3-1 shows a typical setup for wireless Internet access through an existing cable modem or DSL connection. Book III Chapter 3 Going Wirele As Figure 3-1 shows, the LAN has both wired and wireless PCs. In this example, either a cable or DSL modem connects the LAN to the Internet through a NAT router and hub. Laptops with wireless network cards connect to the LAN through a wireless access point attached to one of the RJ-45 ports on the hub. To connect desktop PCs to this wireless network, you can use a USB wireless network card (which connects to a USB port). If you haven't yet purchased a NAT router and hub for your cable or DSL connection, consider buying a router and hub that has a built-in wireless access point. # Configuring the Wireless Access Point Configuring the wireless access point (commonly referenced as either an AP or WAP) involves the following tasks: - ◆ Setting a name for the wireless network. (The technical term for this name is the ESSID.) - ◆ Setting the frequency or channel on which the wireless access point communicates with the wireless network cards. The access point and the cards must use the same channel. - **♦** Deciding whether to use encryption. - ◆ If encryption is to be used, setting the number of bits in the encryption key and the value of the encryption key. For the encryption key, 24 bits are internal to the access point; you specify only the remaining bits. Thus, for 64-bit encryption, you have to specify a 40-bit key, which comes to 10 hexadecimal digits. (A hexadecimal digit is an integer from 0-9 or a letter from A-F.) For a 128-bit encryption key, you specify 104 bits, or 26 hexadecimal digits. - ◆ Setting the access method that wireless network cards must use when connecting to the access point. You can opt for either open access or shared key. The open-access method is typical (even when using encryption). - ◆ Setting the wireless access point to operate in infrastructure (managed) mode. You use this mode to connect wireless network cards to an existing Ethernet LAN. The exact method of
configuring a wireless access point depends on the device's make and model; the vendor provides instructions to configure the wireless access point. Typically you work through a graphical client application on a Windows PC to do the configuration. If you enable encryption, make note of the encryption key; you have to specify that same key for each wireless network card on your laptops or desktops. # Configuring Wireless Networking On your Linux laptop, the PCMCIA or PC Card manager recognizes the wireless network card and loads the appropriate driver for the card. Linux treats the wireless network card like another Ethernet device and assigns it a device name such as eth0 or eth1. If you already have an Ethernet card in the laptop, that card gets the eth0 device name and the wireless PC Card becomes the eth1 device. You do have to configure certain parameters to enable the wireless network card to communicate with the wireless access point. For example, you have to specify the wireless network name assigned to the access point, and the encryption settings must match those on the access point. You can usually configure everything using a graphical network-configuration tool that's available for your Linux distribution — just select the Wireless Network option and fill in the requested information, such as that shown in Figure 3-2. | 5 | Editing Wireless connection 1 | | |--|---|--| | Connection <u>n</u> ame: Wireless connection 1 | | | | ✓ Connect | : <u>a</u> utomatically | | | Wireless | Wireless Security IPv4 Settings IPv6 Settings | | | SSID: | | | | M <u>o</u> de: | Infrastructure \$ | | | BSSID: | | | | MAC add | ress: | | | MT <u>U</u> : | automatic 🗘 bytes | ☐ Availabl | e to all users <u>C</u> ancel Apply | | Book III Chapter 3 Going Wirele Figure 3-2: Configuring a new wireless connection. The Network Configuration tool saves your wireless network settings in a text file. The name of the text file depends on the wireless network device name. If the wireless network device name is eth0, the configuration is stored in the text file $\label{eq:config} \begin{tabular}{l} \begin{tabular$ IPV6INIT=no USERCTL=no PEERDNS=yes TYPE=Wireless DEVICE=eth1 HWADDR=00:02:2d:8c:f9:c4 BOOTPROTO=dhcp ONBOOT=no DHCP_HOSTNAME= NAME= ESSID='HOME' CHANNEL=6 MODE=Managed RATE=auto | Table 3-1 | Settings in Configuration File for a Wireless
Ethernet Network Interface | |----------------|--| | This Parameter | Means the Following | | BOOTPROTO | The name of the protocol to use to get the IP address for the interface. The protocol used is either dhop or bootp for an Ethernet interface. | | CHANNEL | Channel number (between 1 and 14 in United States and Canada). Must be the same as that set for the wireless access point. In managed mode, you don't need to specify the channel. | | DEVICE | The device name for the wireless Ethernet network interface (eth0 for the first interface, eth1 for the second, and so on). | | ESSID | Extended Service Set (ESS) Identifier (ID), also known as the wireless network name. It is case-sensitive and must be the same as the name specified for the wireless access point. Provide the name within single quotes (for example, 'HOME'). | | HWADDR | The hardware address (also called the MAC address) of the wireless network card (six pairs of colon-separated hexadecimal numbers; for example, 00:02:2d:8c:f9:c4). The wireless card's device driver automatically detects this address. | | IPV6INIT | When set to yes, this parameter initializes IPv6 configuration for the wireless interface. Set it to no if you're not using IPv6. | | MODE | The mode of operation of the wireless network card. Set to Managed for a typical network that connects through a wireless access point. | | This Parameter | Means the Following | |----------------|---| | NAME | A nickname for your wireless network. If you don't specify it, the host name is used as the nickname. | | ONBOOT | Set to ${\tt yes}$ to activate the wireless interface at boot time; otherwise set to ${\tt no}.$ | | PEERDNS | Set to yes to enable the interface to modify your system's /etc/resolv.conf file to use the DNS servers obtained from the DHCP server (the same server that provides the IP address for the interface). If you set this parameter to no, the /etc/resolv.conf file is left unchanged. | | RATE | Bit rate for the wireless connection (set to one of the following options: 1M, 2M, 5.5M, 11M, or auto). The <i>M</i> means Mbps, or a million bits per second. Set to auto to use the maximum possible transmission rate. | | TYPE | Set to Wireless for wireless network interface. | | USERCTL | When set to yes, a user who isn't logged in as root can control the device. Set it to no so that only root can control the device. | In some Linux distributions, the encryption key is stored separately. For a wireless Ethernet card whose device name is $\mathtt{eth1}$, the encryption key is stored in the $/\mathtt{etc/sysconfig/network-scripts/keys-eth1}$ file. Here is what this file contains for my example: KEY=1fdf3fdefe The key has 10 hexadecimal digits for a 40-bit key (for example, 1fdf-3fde-fe) or 26 hexadecimal digits for a 104-bit key. The keys are 64-bit and 128-bit, respectively, but the encryption algorithm automatically generates 24 bits of the key, so you need to specify only the remaining bits. The longer the key, the more secure the encryption. If you ever manually edit the parameters in the wireless Ethernet configuration file, type the following command to reactivate the wireless network interface after editing the configuration file: /etc/init.d/network restart In SUSE Linux, use YaST to configure the wireless network. SUSE stores the wireless configuration parameters in a file whose name begins with ifcfg-wlan, followed by a number such as 0 or 1, depending on the sequence number of the wireless network interface. Book III Chapter 3 Going wire The configuration file is stored in the /etc/sysconfig/network directory. Here's a typical list of wireless configuration parameters from a configuration file in SUSE Linux: ``` WIRELESS_MODE='Managed' WIRELESS_ESSID='HOME' WIRELESS_NICK='' WIRELESS_RATE='auto' WIRELESS_AUTH_MODE='open' WIRELESS_KEY_0='0123-4567-89' ``` To check the status of the wireless network interface, type the following command: iwconfig Here's a typical output from a laptop with a wireless Ethernet PC card. (The output should be similar in other Linux distributions.) ``` lo no wireless extensions. eth0 no wireless extensions. sit0 no wireless extensions. eth1 IEEE 802.11b ESSID:"HOME" Nickname:"localhost.localdomain" Mode:Managed Frequency:2.437 GHz Access Point: 00:30:AB:06:E2:5D Bit Rate=11 Mb/s Sensitivity:1/3 Retry limit:4 RTS thr:off Fragment thr:off Encryption key:1FDF-3FDE-FE Security mode:open Power Management:off Link Quality=51/92 Signal level=-40 dBm Noise level=-91 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:27 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 ``` Here the eth1 interface refers to the wireless network card. I edited the encryption key and some other parameters to hide those details, but the sample output shows you what you'd typically see when the wireless link is working. # Chapter 4: Managing the Network #### In This Chapter - ✓ Finding out about the TCP/IP configuration files - Checking TCP/IP networks - ✓ Configuring networks at boot time ike almost everything else in Linux, TCP/IP setup is a matter of preparing numerous configuration files (text files you can edit with any text editor). Most of these configuration files are in the /etc directory. The Linux installer tries to be helpful by hiding the details of the TCP/IP configuration files. Nevertheless, if you know the names of the files and their purposes, editing the files manually (if necessary) is easier. # Discovering the TCP/IP Configuration Files You can configure TCP/IP networking when you install Linux. However, if you want to effectively manage the network, you need to become familiar with the TCP/IP configuration files so that you can edit the files, if necessary. (For example, if you want to check whether the name servers are specified correctly, you have to know about the /etc/resolv.conf file, which stores the IP addresses of name servers.) Table 4-1 summarizes the basic TCP/IP configuration files. I describe these configuration files in the next few sections. A pound sign (#) in a text file indicates a comment. #### /etc/hosts The /etc/hosts text file contains a list of IP addresses and host names for your local network. In the absence of a name server, any network program on your system consults this file to determine the IP address that corresponds to a host name. Think of /etc/hosts as the local phone directory where you can look up the IP address (instead of a phone number) for a local host. | Table 4-1 Basic TCP/IP Network Configuration Files | | | |--|--|--| | This File | Contains the Following | | | /etc/hosts | IP addresses and host names for your local network as well as any other systems that you access often. | | | /etc/networks | Names and IP addresses of networks. | | | /etc/host.conf | Instructions on how to translate host names
into IP addresses. | | | /etc/resolv.conf | IP addresses of name servers. | | | /etc/hosts.allow | Instructions on which systems can access Internet services on your system. | | | /etc/hosts.deny | Instructions on which systems must be denied access to Internet services on your system. | | | /etc/nsswitch. | Instructions on how to translate host names into IP addresses. | | Here is the /etc/hosts file from a system, showing the IP addresses and names of other hosts on a typical LAN: ``` 127.0.0.1 localhost localhost.localdomain # Other hosts on the LAN 192.168.0.100 lnbp933 192.168.0.50 lnbp600 192.168.0.200 lnbp200 192.168.0.233 lnbp233 192.168.0.40 lnbp400 ``` As the example shows, each line in the file starts with an IP address followed by the host name for that IP address. (You can have more than one host name for any given IP address.) In some distributions, such as openSUSE, the /etc/hosts file has the following: IP-Address, Fully-Qualified-Hostname, Short-Hostname. In all cases, anything after the host name (such as the Short-Hostname) is taken as an alias. #### /etc/networks /etc/networks is another text file that contains the names and IP addresses of networks. These network names are commonly used in the routing command (/sbin/route) to specify a network by name instead of by its IP address. Don't be alarmed if your Linux PC doesn't have the /etc/networks file. Your TCP/IP network works fine without this file. In fact, the Linux installer doesn't create a /etc/networks file. # /etc/host.conf Linux uses a special *library* (that is, a collection of computer code) called the *resolver* to obtain the IP address that corresponds to a host name. The /etc/host.conf file specifies how names are *resolved* (that is, how the name gets converted to a numeric IP address). A typical /etc/host.conf file might contain the following lines: ``` order hosts, bind multi on ``` The entries in the /etc/host.conf file tell the resolver what services to use (and in which order) to resolve names. The order option indicates the order of services (in recent distributions, the nsswitch.conf file, discussed in a later section, performs this function). The sample entry tells the resolver to first consult the /etc/hosts file and then check the name server to resolve a name. Use the multi option to indicate whether a host in the /etc/hosts file can have multiple IP addresses. Hosts that have more than one IP address are called *multihomed* because the presence of multiple IP addresses implies that the host has several network interfaces. (In effect, the host *lives* in several networks simultaneously.) ## /etc/resolv.conf The /etc/resolv.conf file is another text file used by the resolver — the library that determines the IP address for a host name. Here is a sample /etc/resolv.conf file: ``` nameserver 192.168.0.1 # dhcp: eth0 search nrockv01.md.comcast.net ``` The nameserver line provides the IP addresses of name servers for your domain. If you have multiple name servers, list them on separate lines. They're queried in the order in which they appear in the file. The search line tells the resolver how to search for a host name. For example, when trying to locate a host name myhost, the search directive in the example causes the resolver to try myhost.nrockv01.md.comcast.net first, then myhost.md.comcast.net, and finally myhost.comcast.net. If you don't have a name server for your network, you can safely ignore this file. TCP/IP still works, even though you may not be able to refer to hosts by name (other than those listed in the /etc/hosts file). Book III Chapter 4 Managing the Network ### /etc/hosts.allow The /etc/hosts.allow file specifies which hosts are allowed to use the Internet services (such as TELNET and FTP) running on your system. This file is consulted before certain Internet services start. The services start only if the entries in the hosts.allow file imply that the requesting host is allowed to use the services. The entries in /etc/hosts.allow are in the form of a server: IP address format, where server refers to the name of the program providing a specific Internet service and IP address identifies the host allowed to use that service. For example, if you want all hosts in your local network (which has the network address 192.168.0.0) to access the TELNET service (provided by the in.telnetd program), add the following line in the /etc/hosts.allow file (the last octet is left off to signify all possibilities within that range): ``` in.telnetd:192.168.0. ``` If you want to let all local hosts have access to all Internet services, you can use the ALL keyword and rewrite the line as follows: ``` ALL:192.168.0. ``` Finally, to open all Internet services to all hosts, you can replace the IP address with ALL, as follows: ``` ALL:ALL ``` You can also use host names in place of IP addresses. To find out the detailed syntax of the entries in the /etc/hosts.allow file, type **man hosts.allow** at the shell prompt in a terminal window. ## /etc/hosts.deny The /etc/hosts.deny file is just the opposite of /etc/hosts.allow. Whereas hosts.allow specifies which hosts may access Internet services (such as TELNET and TFTP) on your system, the hosts.deny file identifies the hosts that must be denied services. The /etc/hosts.deny file is consulted if no rules are in the /etc/hosts.allow file that apply to the requesting host. Service is denied if the hosts.deny file has a rule that applies to the host. The entries in /etc/hosts.deny file have the same format as those in the /etc/hosts.allow file; they're in the form of a <code>server:IP</code> address format, where <code>server</code> refers to the name of the program providing a specific Internet service and <code>IP</code> address identifies the host that must not be allowed to use that service. If you already set up entries in the /etc/hosts.allow file to allow access to specific hosts, you can place the following line in /etc/hosts.deny to deny all other hosts access to any service on your system: ALL:ALL To find out the detailed syntax of the entries in the /etc/hosts.deny file, type **man hosts.deny** at the shell prompt in a terminal window. ## /etc/nsswitch.conf The /etc/nsswitch.conf file, known as the name service switch (NSS) file, specifies how services such as the resolver library, NIS, NIS+, and local configuration files (such as /etc/hosts and /etc/shadow) interact. NIS and NIS+ are *network information systems* — another type of name-lookup service. Newer versions of the Linux kernel use the /etc/nsswitch.conf file to determine what takes precedence: a local configuration file, a service such as DNS (Domain Name System), or NIS. As an example, the following hosts entry in the /etc/nsswitch.conf file says that the resolver library first tries the /etc/hosts file, then tries NIS+, and finally tries DNS: hosts: files nisplus dns You can find out more about the /etc/nsswitch.conf file by typing man nsswitch.conf in a terminal window. # Checking Out TCP/IP Networks After you configure Ethernet and TCP/IP (whether during Linux installation or by running a network configuration tool or command later), you can use various networking applications without much problem. On the off chance that you do run into trouble, Linux includes several tools to help you monitor and diagnose problems. ## Checking the network interfaces Use the /sbin/ifconfig command to view the currently configured network interfaces. The ifconfig command is used to configure a network interface (that is, to associate an IP address with a network device). If you run ifconfig without any command-line arguments, the command displays information about current network interfaces. The following is a typical output when you type /sbin/ifconfig: Book III Chapter 4 Network eth0 Link encap:Ethernet HWaddr 00:08:74:E5:C1:60 inet addr:192.168.0.7 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::208:74ff:fee5:c160/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 ``` RX packets:612851 errors:0 dropped:0 overruns:0 frame:0 TX packets:574187 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:99834031 (95.2 MiB) TX bytes:76034821 (72.5 MiB) Interrupt:10 Base address:0x3000 eth1 Link encap: Ethernet HWaddr 00:02:2D:8C:F8:C5 inet addr:192.168.0.9 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::202:2dff:fe8c:f8c5/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3833 errors:0 dropped:0 overruns:0 frame:0 TX packets:1242 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:560194 (547.0 KiB) TX bytes:250287 (244.4 KiB) Interrupt:3 Base address:0x100 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:2456 errors:0 dropped:0 overruns:0 frame:0 TX packets:2456 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:2891581 (2.7 MiB) TX bytes:2891581 (2.7 MiB) ``` This output shows that three network interfaces — the loopback interface (10) and two Ethernet cards (eth0 and eth1) — are currently active on this system. For each interface, you can see the IP address, as well as statistics on packets delivered and sent. If the Linux system has a dial-up PPP link up and running, you also see an item for the ppp0 interface in the output. ## Checking the 1P routing table The other network configuration command, /sbin/route, also provides status information when you run it without a command-line argument. If you're having trouble checking a connection to another host (that you specify with an IP address), check the IP routing table to see whether a default gateway is specified. Then check the gateway's routing table to ensure that paths to an outside network appear in that routing table. A typical output from the /sbin/route command looks like the following: ``` Kernel IP routing table Destination Gateway Genmask Flags
Metric Ref Use Iface 192.168.0.0 * 255.255.255.0 U 0 0 0 eth0 192.168.0.0 * 255.255.255.0 U 0 0 0 eth1 169.254.0.0 * 255.255.0.0 U 0 0 0 eth1 default 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 ``` As this routing table shows, the local network uses the eth0 and eth1 Ethernet interfaces, and the default gateway is the eth0 Ethernet interface. The default gateway is a routing device that handles packets addressed to any network other than the one in which the Linux system resides. In this example, packets addressed to any network address other than those beginning with 192.168.0 are sent to the gateway — 192.168.0.1. The gateway forwards those packets to other networks (assuming, of course, that the gateway is connected to another network, preferably the Internet). ### Checking connectivity to a host To check for a network connection to a specific host, use the ping command. ping is a widely used TCP/IP tool that uses a series of Internet Control Message Protocol (ICMP, pronounced *EYE-comp*) messages. ICMP provides for an echo message to which every host responds. Using the ICMP messages and replies, ping can determine whether the other system is alive and can compute the round-trip delay in communicating with that system. The following example shows how I run ping to see whether a system on my network is alive: ``` ping 192.168.0.1 ``` Here is what this command displays on my home network: ``` PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. 64 bytes from 192.168.0.1: icmp_seq=1 ttl=63 time=0.256 ms 64 bytes from 192.168.0.1: icmp_seq=2 ttl=63 time=0.267 ms 64 bytes from 192.168.0.1: icmp_seq=3 ttl=63 time=0.272 ms 64 bytes from 192.168.0.1: icmp_seq=4 ttl=63 time=0.267 ms 64 bytes from 192.168.0.1: icmp_seq=4 ttl=63 time=0.267 ms 64 bytes from 192.168.0.1: icmp_seq=5 ttl=63 time=0.275 ms --- 192.168.0.1 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt min/avq/max/mdev = 0.256/0.267/0.275/0.016 ms ``` In Linux, ping continues to run until you press Ctrl+C to stop it; then it displays summary statistics showing the typical time it takes to send a packet between the two systems. On some systems, ping simply reports that a remote host is alive. However, you can still get the timing information by using appropriate command-line arguments. The ping command relies on ICMP messages that many firewalls are configured to block. Therefore ping may not always work and is no longer a reliable way to test network connectivity. If ping fails for a specific host, don't assume that the host is down or not connected to the network. You can typically use ping to successfully check connectivity within your local area network. ### Checking network status To check the status of the network, use the netstat command. This command displays the status of network connections of various types (such as TCP and UDP connections). You can view the status of the interfaces quickly by typing **netstat -i**, which results in an output similar to the following: ``` Kernel Interface table Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg eth0 1500 0 613175 0 0 1 574695 0 0 0 BMRU eth1 1500 0 4298 0 0 0 1375 1 0 0 BMRU lo 16436 0 3255 0 0 0 3255 0 0 0 LRU ``` In this case, the output shows the current status of the loopback and Ethernet interfaces. Book III Chapter 4 > Managing the Network Table 4-2 describes the meanings of the columns. | Table 4-2 | Meaning of Columns in the Kernel Interface Table | |-------------------|--| | Column | Meaning | | Iface | Name of the interface | | MTU | Maximum Transmission Unit — the maximum number of bytes that a packet can contain | | Met | Metric value for the interface — a number indicating distance (in terms of number of hops) that routing software uses when deciding which interface to send packets through | | RX-OK,
TX-OK | Number of error-free packets received (RX) or transmitted (TX) | | RX-ERR,
TX-ERR | Number of packets with errors | | RX-DRP,
TX-DRP | Number of dropped packets | | RX-OVR,
TX-OVR | Number of packets lost due to overflow | | Flg | A = receive multicast; B = broadcast allowed; D = debugging turned on; L = loopback interface (notice the flag on 10), M = all packets received, N = trailers avoided; O = no ARP on this interface; P = point-to-point interface; R = interface is running; and U = interface is up | Another useful form of netstat option is -t, which shows all active TCP connections. Following is a typical result of typing **netstat -t** on one Linux PC: ``` Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 localhost:2654 localhost:1024 ESTABLISHED tcp 0 0 localhost:1024 localhost:2654 ESTABLISHED tcp 0 0 LNBNECXAN.nrockv01.:ssh 192.168.0.6:1577 ESTABLISHED ``` In this case, the output columns show the protocol (Proto), the number of bytes in the receive and transmit queues (Recv-Q, Send-Q), the local TCP port in hostname: service format (Local Address), the remote port (Foreign Address), and the state of the connection. Type **netstat** -ta to see all TCP connections — both active and the ones your Linux system is listening to (with no connection established yet). For example, here's a typical output from the netstat -ta command: Active Internet connections (servers and established) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 *:32769 *:* LISTEN ``` tcp 0 0 *:mysql *:* LISTEN tcp 0 0 *:sunrpc *:* LISTEN tcp 0 0 *:ftp *:* LISTEN tcp 0 0 localhost.localdomain:ipp *:* LISTEN tcp 0 0 *:telnet *:* LISTEN tcp 0 0 localhost.localdomain:5335 *:* LISTEN tcp 0 0 localhost.localdomain:smtp *:* LISTEN tcp 0 0 localhost.localdomain:smtp *:* LISTEN tcp 0 0 192.168.0.9:45876 www.redhat.com:http ESTABLISHED tcp 0 0 192.168.0.9:45877 www.redhat.com:http ESTABLISHED tcp 0 0 192.168.0.9:45877 www.redhat.com:http ESTABLISHED tcp 0 0 *:ssh *:* LISTEN tcp 0 0 *:ssh *:* LISTEN ``` #### Sniffing network packets Sniffing network packets — sounds like something illegal, doesn't it? Nothing like that. *Sniffing* simply refers to viewing the TCP/IP network data packets. The concept is to capture all the network packets so that you can examine them later. If you feel like sniffing TCP/IP packets, you can use tcpdump, a command-line utility that comes with Linux. As its name implies, it *dumps* (prints) the headers of TCP/IP network packets. To use tcpdump, log in as root and type the tcpdump command in a terminal window. Typically, you want to save the output in a file and examine that file later. Otherwise tcpdump starts spewing results that just flash by on the window. For example, to capture 1,000 packets in a file named tdout and attempt to convert the IP addresses to names, type the following command: ``` tcpdump -a -c 1000 > tdout ``` After capturing 1,000 packets, tcpdump quits. Then you can examine the output file, tdout. It's a text file, so you can simply open it in a text editor or type **more tdout** to view the captured packets. Just to whet your curiosity, here are some lines from a typical output from tcpdump: ``` 20:05:57.723621 arp who-has 192.168.0.1 tell LNBNECXAN.nrockv01.md.comcast.net 20:05:57.723843 arp reply 192.168.0.1 is-at 0:9:5b:44:78:fc 20:06:01.733633 LNBNECXAN.nrockv01.md.comcast.net.1038 > 192.168.0.6.auth: S 536321100:536321100(0) win 5840 <mss 1460,sackOK,timestamp 7030060 0.nop.wscale 0> (DF) 20:06:02.737022 LNBNECXAN.nrockv01.md.comcast.net.ftp > 192.168.0.6.1596: P 1:72 (71) ack 1 win 5840 (DF) 20:06:02.935335 192.168.0.6.1596 > LNBNECXAN.nrockv01.md.comcast.net.ftp: . ack 72 win 65464 (DF) 20:06:05.462481 192.168.0.6.1596 > LNBNECXAN.nrockv01.md.comcast.net.ftp: P 1:12 (11) ack 72 win 65464 (DF) 20:06:05.462595 LNBNECXAN.nrockv01.md.comcast.net.ftp > 192.168.0.6.1596: . ack 12 win 5840 (DF) 20:06:05.465344 LNBNECXAN.nrockv01.md.comcast.net.ftp > 192.168.0.6.1596: P 72:105(33) ack 12 win 5840 (DF) . . . lines deleted . . . ``` Book III Chapter 4 > Managing the Network The output offers some clues to what's going on, with each line showing information about one network packet. Every line starts with a timestamp followed by details of the packet (information such as where it originates and where it is going). I don't try to explain the details here, but you can type **man tcpdump** to find out more about some of the details (and more importantly, see what other ways you can use tcpdump). If topdump isn't installed in Debian, type apt-get install topdump to install it. You can use another packet sniffer called Wireshark in Linux. To find out more about Wireshark, visit . www.wireshark.org/. #### Using GUI tools You can check the status of your network through the graphical interfaces a number of ways. One of those is to use the System Monitor, as shown in Figure 4-1. In addition to seeing the network load, you can click the Processes tab to see the status of various processes. Figure 4-1: The System Monitor. # Configuring Networks at Boot Time It makes sense to start your network automatically every time you boot the system. For that to happen, various startup scripts must contain appropriate commands. You don't have to do anything special other than configure your network (either during installation or by using the network configuration tool at a later time). If the network balks at startup, however, you can troubleshoot by checking the files I mention in this section. In Debian, Ubuntu, and Xandros, the /etc/network/interfaces file describes the network interfaces available in your system, and the /sbin/ifup command activates the interfaces when you boot the system. Here is the content of a typical /etc/network/interfaces file from a Debian system: ``` # This
file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp ``` The auto eth0 line indicates that you can bring up the Ethernet interface at initialization by using the command ifup -a invoked by a system startup script. The line ifup eth0 inet dhcp identifies Ethernet as a TCP/IP network interface that is configured by Dynamic Host Configuration Protocol (DHCP). In Fedora, the network-activation script uses a set of text files in the /etc/sysconfig directory to activate the network interfaces. For example, the script checks the variables defined in the /etc/sysconfig/network file to decide whether to activate the network. In /etc/sysconfig/network, you see a line with the NETWORKING variable as follows: NETWORKING=yes The network activates only if the NETWORKING variable is set to yes. A number of scripts in the /etc/sysconfig/network-scripts directory activate specific network interfaces. For example, the configuration file for activating the Ethernet interface eth0 is the file /etc/sysconfig/network-scripts/ifcfg-eth0. Here's what a typical /etc/sysconfig/network-scripts/ifcfg-eth0 file contains: DEVICE=eth0 BOOTPROTO=dhcp HWADDR=00:08:74:E5:C1:06 ONBOOT=yes TYPE=Ethernet Book III Chapter 4 > Managing the Network The DEVICE line provides the network device name. The BOOTPROTO variable is set to dhop, indicating that the IP address is obtained dynamically by using DHCP. The ONBOOT variable states whether this network interface activates when Linux boots. If your PC has an Ethernet card and you want to activate the eth0 interface at boot time, ONBOOT must be set to yes. The configuration file ifcfg-eth0 in the /etc/sysconfig/network-scripts directory works only if your PC has an Ethernet card and the Linux kernel has detected and loaded the specific driver for that card. In SUSE, the network information is kept in the /etc/sysconfig/network directory in files with names beginning with ifcfg. For Ethernet interfaces, the configuration filename begins with ifcfg-eth-id- followed by the unique hardware address of the Ethernet card. Here are the key lines in a typical Ethernet configuration file: ``` BOOTPROTO='dhcp' STARTMODE='auto' ``` The BOOTPROTO='dhcp' line indicates that the interface is set up using DHCP, and STARTMODE='auto' means that the interface is initialized when the system boots. Within KDE, you can start the Control Center by typing **Session Management** in the Search box and configuring the default operations for the system, as shown in Figure 4-2. Figure 4-2: The Session Management interface. Another useful interface that can give you a quick look at whether the network is up and running is System Information, shown in Figure 4-3. Although this interface offers no way to change configuration settings, it's nice to have a tool that can quickly show you the status of the system, including network status. Figure 4-3: System Information can show the network status. Book III Chapter 4 Managing the Network # **Book IV**The Internet # Contents at a Glance | Chapter 1: Browsing the Web | 205 | |--|-----| | Discovering the Web Web Browsing in Linux | | | Chapter 2: Reading Newsgroups and RSS Feeds | 217 | | Understanding Newsgroups | 218 | | Reading Newsgroups from Your ISP | | | Reading and Searching Newsgroups at Websites | | | Reading RSS Feeds | 228 | | Chapter 3: Using FTP | 231 | | Using Graphical FTP Clients | 231 | | Using the Command-Line FTP Client | | | Chapter 4: Hosting Internet Services | 241 | | Understanding Internet Services | 241 | | Using the Internet Super Server | | | Running Standalone Servers | 250 | | Chapter 5: Managing Mail and News Servers | 257 | | Installing the Mail Server | 257 | | Installing the INN Server | 268 | | Configuring and Starting the INN Server | | | Setting Up Local Newsgroups | 275 | | Chapter 6: Managing DNS | 279 | | Understanding Domain Name System (DNS) | 279 | | Configuring DNS | 285 | # Chapter 1: Browsing the Web #### In This Chapter - **∠** Discovering the web - ✓ Understanding a URL - Checking out web servers and web browsers - **✓** Taking stock of web browsers for Linux - **✓** Web browsing with Mozilla Firefox suspect you already know about the web or have been living under a rock for a number of years. However, did you know that the web (or more formally, the World Wide Web) made the Internet what it is today? The Internet's been around for quite a while, but it didn't reach the masses until the web came along in 1993. Before the web was created, you had to use arcane Unix commands to download and use files, which was simply too complicated for most of us. With the web, however, anyone can enjoy the benefits of the Internet by using a web browser — a graphical application that downloads and displays web documents. A click of the mouse is all you need to go from reading a document from your company website to downloading a video clip from across the country. In this chapter, I briefly describe the web and introduce Mozilla Firefox — the primary web browser (and, for that matter, mail and newsreader, too) in most Linux distributions. There are many other web browsers available and some are included with various distributions, but after you've used one web browser, you can easily use any other web browser. # Discovering the Web If you've used a file server at work, you know the convenience of sharing files. You can use the word processor on your desktop to get to any document on the shared server. Now imagine a word processor that enables you to open and view a document that resides on any computer on the Internet. You can view the document in its full glory, with formatted text and graphics. If the document makes a reference to another document (possibly residing on yet another computer), you can open that linked document simply by clicking the reference. That kind of easy access to distributed documents is essentially what the web provides. Of course, the documents have to be in a standard format so that any computer (with the appropriate web browser software) can access and interpret the document. And a standard protocol is necessary for transferring web documents from one system to another. The standard web document format is *HyperText Markup Language* (HTML), and the standard protocol for exchanging web documents is *HyperText Transfer Protocol* (HTTP). HTML documents are text files and don't depend on any specific operating system, so they work on any system from Windows and Mac to any type of Unix and Linux. A *web server* is software that provides HTML documents to any client that makes the appropriate HTTP requests. A *web browser* is the client software that actually downloads an HTML document from a web server and displays the contents graphically. #### Like a giant spider's web The web is the combination of the web servers and the documents (HTML) that the servers offer. When you look at the web in this way, the web is like a giant book whose pages are scattered throughout the Internet. You use a web browser running on your computer to view the pages — the pages are connected like a giant spider's web, with the documents everywhere. Imagine that the web pages — HTML documents — are linked by network connections that resemble a giant spider's web, so you can see why the web is called *the web*. The *World Wide* part comes from the fact that the web pages are scattered around the world. #### Links and URLs Like the pages of printed books, web pages contain text and graphics. Unlike printed books, however, web pages can include multimedia, such as video clips, sound, and links to other web pages. The *links* in a web page are references to other web pages that you can follow to go from one page to another. The web browser typically displays these links as underlined text (in a different color) or as images. Each link is like an instruction to you — something like "For more information, please consult Chapter 4," as you might find in a book. In a web page, all you have to do is click the link; the web browser brings up the referenced page, even though that document may actually reside on a faraway computer somewhere on the Internet. The links in a web page are referred to as *hypertext links* because when you click a link, the web browser jumps to the web page referenced by that link. This arrangement brings up a question. In a printed book, you might ask the reader to go to a specific chapter or page in the book. How does a hypertext link indicate the location of the referenced web page? In the web, each web page has a special name, called a *Uniform Resource Locator* (URL). A URL uniquely specifies the location of a file on a computer. Figure 1-1 shows the parts of a URL. Figure 1-1: The parts of a Uniform Resource Locator (URL). As Figure 1-1 shows, a URL has the following parts: ◆ **Protocol:** Name of the protocol that the web browser uses to access the data from the file the URL specifies. In Figure 1-1, the protocol is http://, which means that the URL specifies the location of a web page. Here are some of the common protocol types and their meanings: file:// means the URL points to a local file. You can use this URL to view HTML files without having to connect to the Internet. For example, file:///var/www/html/index.html opens the file /var/www/html/index.html from your Linux system. ftp:// means that you can download a file using the File Transfer Protocol (FTP). For example, ftp://ftp.purdue.edu/pub/uns/NASA/nasa.jpg refers to the image file nasa.jpg from the /pub/uns/NASA directory of the FTP server ftp.purdue.edu. If you want to access a specific user account via FTP, use a URL in the following form: ftp://username:password@ftp.somesite.com/ with username and password embedded in the
URL. The password is in plain text and not secure. http:// means that you download the file using the HyperText Transfer Protocol (HTTP). This protocol is the well-known format of URLs for all websites, such as http://fedoraproject.org for the Fedora Project's home page. If the URL doesn't have a filename, the web server sends a default HTML file named index.html. (That's the default filename for the popular Unix-based Apache web servers; Microsoft Windows web servers use a different default filename.) Book IV Chapter 1 Browsing the Wei https:// specifies that you access the file through a *Secure Sockets Layer* (SSL) connection — a protocol designed by Netscape Communications for encrypted data transfers across the Internet. Typically, this form of URL is used when the web browser sends sensitive information (such as credit card number, username, and password) to a web server. For example, a URL such as ``` https://some.site.com/secure/takeorder.html ``` may display an HTML form that requests credit card information and other personal information (such as name, address, and phone number). mailto: specifies an e-mail address that you can use to send an e-mail message. This URL opens your e-mail program, from which you can send the message. For example, mailto:webmaster@someplace.com refers to the webmaster at the host someplace.com. news://specifies a newsgroup that you can read by means of the Network News Transfer Protocol (NNTP). For example: ``` news://news.md.comcast.giganews.com/comp.os.linux. setup ``` accesses the comp.os.linux.setup newsgroup at the news server news.md.comcast.giganews.com. If you have a default news server configured for the web browser, you can omit the news server's name and use the URL news:comp.os.linux.setup to access the newsgroup. - ◆ Domain name: Contains the fully qualified domain name of the computer that has the file this URL specifies. You can also provide an IP address in this field. The domain name is not case-sensitive. - ◆ Port: Port number that is used by the protocol listed in the first part of the URL. This part of the URL is optional; all protocols have default ports. The default port for HTTP, for example, is 80. If a site configures the web server to listen to a different port, the URL has to include the port number. - ◆ Directory path: Directory path of the file referred to in the URL. For web pages, this field is the directory path of the HTML file. The directory path is case-sensitive. - ◆ Filename: Name of the file. For web pages, the filename typically ends with .htm or .html. If you omit the filename, the web server returns a default file (often named index.html). The filename is case-sensitive. - ◆ HTML anchor: Optional part of the URL that makes the web browser jump to a specific location in the file. If this part starts with a question mark (?) instead of a pound sign(#), the browser takes the text following the question mark to be a query. The web server returns information based on such queries. #### Web servers and web browsers The web server serves up the web pages, and the web browser downloads them and displays them to the user. That's pretty much the story with these two cooperating software packages that make the web work. In a typical scenario, the user sits in front of a computer that's connected to the Internet and runs a web browser. When the user clicks a link or types a URL into the web browser, the browser connects to the web server and requests a document from the server. The web server sends the document (usually in HTML format) and ends the connection. The web browser interprets and displays the HTML document with text, graphics, and multimedia (if applicable). The web browser's connection to the web server ends after the server sends the document. When the user browses through the downloaded document and clicks another hypertext link, the web browser again connects to the web server named in the hypertext link, downloads the document, ends the connection, and displays the new document. That's how the user can move from one document to another with ease. A web browser can do more than simply "talk" HTTP with the web server; web browsers can also download documents and files using FTP, and many have integrated mail and newsreaders as well. # Web Browsing in Linux As web pages become more interactive and complex, web browsing turns into a stimulating, engaging experience. Also, there's always the element of surprise: You can click a link and end up at unexpected web pages. Links are the most curious (and useful) aspect of the web. You can start at a page that shows today's weather, and a click later, you can be reading this week's issue of an online magazine. # Checking out web browsers for Linux Many Linux distributions come with the Mozilla Firefox web browser. Firefox is Mozilla's improvement on their original browser, an open source version of the venerable Netscape Communicator. Chrome, from Google, is popular as well — and commonly used today. Several others that you might run across, or consider using, are - **◆ Epiphany:** A GNOME web browser that uses parts of the Mozilla code to draw the web pages but has a simpler user interface than Mozilla. - Konqueror: A KDE web browser that can also double as a file manager and a universal viewer. Book IV Chapter 1 Browsing the We In addition to dedicated browser applications such as these, many other applications are capable of downloading and displaying web pages. If your distribution doesn't install Firefox by default, you can easily install it by typing **su** - to become root and then typing **apt-get install mozilla-firefox**. #### Introducing Firefox's user interface You can typically start Firefox by clicking an icon on the panel or by choosing Firefox from the GUI desktop's menu. When Firefox starts, it displays a browser window with a default home page. (The main web page on a web server is the *home page*.) You can configure Firefox to use a different web page as the default home page. Figure 1-2 shows a web page from a U.S. government website (www.irs.gov), as well as the main elements of the Firefox browser window. Figure 1-2: The Firefox web browser in action. Firefox supports *tabbed browsing*, which means that you can open a new tab (by pressing Ctrl+T or clicking the plus sign to the right of the last open tab) and view a web page in that tab. That way you can view multiple web pages in a single window. The Firefox web browser includes lots of features in its user interface, but you can master it easily. You can start with just the basics to get going with Firefox and then gradually expand to areas that you haven't yet explored. #### Firefox toolbars By default, the standard toolbar is hidden. When the cursor is moved to the upper right, however, the toolbar — and the options associated with the standard menus (File, Edit, and so forth) — appear. You can configure what appears here, but the following is standard. To start with, here's what you can do with the buttons and text boxes on the Navigation toolbar, from left to right: - **♦ Back:** Move to the previous web page. - **♦ Forward:** Move to the page from which you have gone backward. - **♦ Recent Pages:** Open a drop-down list of recently visited web pages. - ★ Reload: Reload the current web page. - **♦ Stop:** Stop loading the current page. - **♦ Home:** Go to the home page. - ◆ Location: Show the URL of the current web page. (Type a URL in this box and press Enter to view that web page.) - ◆ **Bookmark:** Bookmark the page you are currently viewing. (Click the star icon at the end of the location bar.) - ◆ Search: Search various websites such as Google, Yahoo!, Amazon.com, Dictionary.com, and eBay. (Type text and press Enter to search the currently selected website; the default is Google.) #### Status bar You can think of the bar along the bottom edge of the Firefox window as the status bar because the middle part of that area displays status information while Firefox loads a web page. In the right corner of Firefox's status bar, a security padlock icon appears when you access a secure website. Firefox supports a secure version of HTTP that uses SSL to transfer encrypted data between the browser and the web server. When Firefox connects to a web server that supports secure HTTP, a locked security padlock icon appears on the right edge of the status bar. Otherwise there's no security padlock icon, an absence that signifies an insecure connection. The URL for secure HTTP transfers begins with https://instead of the usual http:// (note the extra s in https). You can click the padlock icon for more security information about the page. Firefox displays status messages in the left part of the status bar. You can watch the messages in this area to see what's going on. If you mouse over a link on the web page, the status bar displays the URL for that link. Book IV Chapter 1 Browsing the Wel #### Firefox menus I haven't mentioned the Firefox menus much. That's because you can usually get by without having to go to them. Nevertheless, taking a quick look through the Firefox menus is worthwhile so you know what each one offers. Table 1-1 gives you an overview of the Firefox menus. | Table 1-1 | Firefox Menus | |-----------|---| | Menu | Enables You to Do the Following | | File | Open a file or web location, open or close a tab, send a web page or link by e-mail, edit a web page, print the current page, import settings and data, and quit Firefox. | | Edit | Copy and paste selections, find text in the current page, and edit your preferences. | | View | Show or hide various toolbars, reload the current page, make the text larger or smaller, and view the HTML code for the page. | | History | Go backward and forward in the list of pages you've visited, or jump to
other recently visited web pages. | | Bookmarks | Bookmark a page, organize the bookmarks, and add links to the
Bookmarks toolbar folder. (These links appear in the Bookmarks
toolbar.) | | Tools | Search the web and manage various aspects of the web page, such as themes; view information about the current page; and clear browsing history. | | Help | Get online help on Firefox. | #### Changing your home page Your home page is the page that Firefox loads when you start it. The default home page depends on the distribution. Often the home page is a file from your system's hard drive. Changing the home page is easy. First, locate the page on the web that you want to be the home page. You can get to that page any way you want. You can search with a search engine to find the page you want, you can type in the URL in the Location text box, or you may even accidentally end up on a page that you want to make your home page. It doesn't matter. When you're viewing the web page that you want to make your home page in Firefox, choose Edit Preferences from the Firefox menu. The Preferences dialog box appears, as shown in Figure 1-3. Figure 1-3: Configure the Firefox browser to suit your preferences. In Figure 1-3, notice the Home Page text box. Below the text box is a Use Current Page button. Click that button to make the current page your home page. If you select this option while multiple tabs are open, the browser will open each tab with every new session. You can set a lot of other options using the Preferences dialog box. Three sets of options worth noting are those that appear under Content (shown in Figure 1-4), Privacy (shown in Figure 1-5), and Security (shown in Figure 1-6). Book IV Chapter 1 rowsing the Web Figure 1-4: You can block popups beneath the Content configuration settings. Figure 1-5: You can choose not to be tracked beneath the Privacy configuration settings. Security tion set- add-on. Although I don't explain all the options here, you can click around to explore everything that you can do from this window. For example, you can click the Use Bookmark button to select a saved URL bookmark as the home page. (You have to select the bookmark from a dialog box.) #### Surfing the Internet with Firefox Where you go from the home page depends on you. All you have to do is click and see where you end up. Move your mouse around. You know when you're on a link because the mouse pointer changes to a hand with an extended index finger. Click the link, and Firefox downloads the web page referenced by that link. How you use the web depends on what you want to do. When you first get started, you may explore a lot — browsing through websites and following links without any specific goal in mind (what you may call web window-shopping). The other, more purposeful, use of the web is to find specific information from the Internet. For example, you might want to locate all the websites that contain documents with a specified keyword. For such searches, you can use one of many web search tools available on the Net. Firefox's Search textbox takes you to the Google Web Search page (www.google.com). A third type of use is a visit to a specific site with a known URL. For example, when reading about a particular topic in this book, you may come across a specific URL. In that case, you want to go directly to that web page. If you want to surf the Internet with Firefox, all you need is a starting web page — then you can click whatever catches your fancy. For example, select the text in the Location text box in Firefox's Navigation toolbar, type www.wiley.com, and then press Enter. You get to the Wiley home page that shows the various imprints (including the Dummies series) that Wiley publishes. There's your starting point. All you have to do is click and you're on your way. # Chapter 2: Reading Newsgroups and RSS Feeds #### In This Chapter - **✓** Finding out about newsgroups - Reading a newsgroup - Searching newsgroups - Reading an RSS feed Wewsgroups were created to provide a distributed conferencing system that spanned the globe. The idea behind them was that you could (and still can) post articles — essentially e-mail messages to an entire group of people — and respond to articles others have posted. Think of an Internet newsgroup as a gathering place — a virtual meeting place where you can ask questions and discuss various issues. (And best of all, everything you discuss is archived for posterity.) Internet newsgroups are similar to the bulletin board systems (BBSs) of the pre-web age or the forums that you may remember being offered on online systems such as AOL and MSN. Participation in newsgroups required access to a news server and a news-reader (Linux almost always comes with software that you can use to read newsgroups). While the concepts remain the same, one big change in recent years is that blogs and microblogs have tended to rise in popularity at the expense of newsgroups. Google, through Google Groups, has done a great job of keeping the newsgroups popular. In this chapter, I introduce you to newsgroups and show you how to read newsgroups with a few of the newsreaders. I also briefly explain how you can read and search newsgroups for free from a few websites. Nowadays another popular way to read summaries of websites and blogs is to use a program that can accept RSS feeds. At the end of this chapter, I briefly describe what an RSS feed is and how you can use a program such as KDE Akregator to subscribe to RSS feeds and read them on your Linux system. # Understanding Newsgroups Newsgroups originated in *Usenet* — a store-and-forward messaging network that was widely used for exchanging e-mail and news items. Usenet works like a telegraph by relaying news and mail from one system to another. In Usenet, the systems aren't on any network; the systems simply dial up one another and use the Unix-to-Unix Copy Protocol (UUCP) to transfer text messages. Although it's a loosely connected collection of computers, Usenet works well — and continues to be used because little expense is involved in connecting to it. All you need is a modem and a site willing to store and forward your mail and news. You have to set up UUCP on your system, but you don't need a sustained network connection; just a few phone calls are all you need to keep the e-mail and news flowing. The downside of Usenet is that you can't use TCP/IP services such as the web, TELNET, or FTP with UUCP. From their Usenet origins, newsgroups have now migrated to the Internet (even though the newsgroups are still called *Usenet newsgroups*). Instead of UUCP, the Network News Transfer Protocol (NNTP) now transports the news. Although (for most of the online world) the news transport protocol has changed from UUCP to NNTP, the store-and-forward concept of news transfer remains. Thus, if you want to get news on your Linux system, you have to find a news server from which your system can download news. Typically, you can use your ISP's news server. # Newsgroup hierarchy The Internet newsgroups are organized in a hierarchy for ease of maintenance as well as ease of use. The newsgroup names help keep things straight by displaying this hierarchy. Admittedly, these newsgroup names are written in Internet-speak, which can seem obscure at first. But the language is easy to pick up after a little bit of explanation. For example, a typical newsgroup name looks like this: comp.os.linux.announce This is a newsgroup for announcements (announce) about the Linux operating system (os.linux), and these subjects fall under the broad category of computers (comp). As you can see, the format of a newsgroup name is a sequence of words separated by periods. These words denote the hierarchy of the newsgroup. Figure 2-1 illustrates the concept of the hierarchical organization of newsgroups. To understand the newsgroup hierarchy, compare the newsgroup name with the pathname of a file (for example, /usr/lib/X11/xinit/Xclients) in Linux. Just as a file's pathname shows the directory hierarchy of the file, the newsgroup name shows the newsgroup hierarchy. In filenames, a slash (/) separates the names of directories; in a newsgroup's name, a period (.) separates the different levels in the newsgroup hierarchy. In a newsgroup name, the first word represents the newsgroup *category*. The comp.os.linux.announce newsgroup, as mentioned, is in the comp category, whereas alt.books.technical is in the alt category. # Top-level newsgroup categories Table 2-1 lists some of the major newsgroup categories. You find a wide variety of newsgroups covering subjects ranging from politics to computers. The Linux-related newsgroups are in the comp.os.linux hierarchy. | Table 2-1 | Some Major Newsgroup Categories | |-----------|--| | Category | Subject | | alt | Alternative newsgroups (not subject to any rules), ranging from the mundane to the bizarre | | bionet | Biology newsgroups | | bit | Bitnet newsgroups | Book IV Chapter 2 Reading Jewsgroups and RSS Feeds | Table 2-1 | Table 2-1 <i>(continued)</i> | | |-----------|--|--| | Category | Subject | | | biz | Business newsgroups | | | clari | Clarinet news service (daily news) | | | comp | Computer hardware and software newsgroups (includes operating systems such as Linux and Microsoft Windows) | | | ieee | Newsgroups for the Institute of Electrical and Electronics Engineers (IEEE) | | | k12 | Newsgroups devoted to elementary and secondary education | | | linux | Newsgroups devoted to Linux (includes a linux.redhat hierarchy) | | | misc | Miscellaneous newsgroups | | | news | Newsgroups about Internet news administration | | | rec | Recreational and art newsgroups | | | sci | Science and engineering newsgroups | | | soc | Newsgroups for discussing social issues and
various cultures | | | talk | Discussions of current issues (think talk radio) | | This short list of categories is deceptive because it doesn't tell you about the wide-ranging variety of newsgroups available in each category. The top-level categories alone number more than a thousand, but many top-level categories are distributed only in specific regions of the world. Because each newsgroup category contains several levels of subcategories, the overall count of newsgroups is close to 100,000! The comp category alone has close to 1,200 newsgroups. Unfortunately, many newsgroups are flooded with spam — like your e-mail Inbox, only worse because anyone can post anything on a newsgroup. Moderated newsgroups offer some relief. Anyone who wants to post on a *moderated newsgroup* must first submit the article to a moderator — a human being — who then decides whether to post or reject the article. You can reduce the spam overload by browsing moderated newsgroups whenever possible. To browse newsgroup categories and get a feel for the breadth of topics covered by the newsgroups, visit the Google Groups website at http://groups.google.com and click the Browse All of Usenet link. (You will need to click the Browse Group Categories link on the first page.) #### Linux-related newsgroups Typically, you have to narrow your choice of newsgroups according to your interests. If you want to know more about Linux, for example, you can choose one or more of these newsgroups: - ♦ comp.os.linux.admin: Linux system administration (inactive). - ◆ comp.os.linux.advocacy:Linux promotion. - ◆ comp.os.linux.announce: Important announcements about Linux. This newsgroup is moderated, which means you must mail the article to a moderator, who then posts it to the newsgroup if the article is appropriate for the newsgroup. - comp.os.linux.answers: Questions and answers about Linux. All the Linux HOWTOs are posted in this moderated newsgroup. - ♦ comp.os.linux.development: Current Linux development work. - ◆ comp.os.linux.development.apps:Linux application development. - ◆ comp.os.linux.development.system: Linux operating system development. - comp.os.linux.embedded: Running the Linux operating system on embedded hardware. - ♦ comp.os.linux.hardware: Linux and various types of hardware. - ♦ comp.os.linux.help: Help with various aspects of Linux (inactive). - ◆ comp.os.linux.misc: Miscellaneous Linux-related topics. - ♦ comp.os.linux.networking: Networking under Linux. - ◆ comp.os.linux.portable: Running the Linux operating system on laptop computers and portable PCs. - comp.os.linux.powerpc: Running the Linux operating system on PowerPC microprocessors. - ♦ comp.os.linux.redhat: Red Hat Linux-related topics (inactive). - ♦ comp.os.linux.setup: Linux setup and installation. - ♦ comp.os.linux.x: Setting up and running the X Window System under Linux. - ♦ comp.os.linux.xbox: Running Linux on the Xbox video game console. - ♦ linux.debian: Moderated newsgroup about Debian GNU/Linux (inactive). - ◆ linux.debian.news: Moderated newsgroup for news items about Debian GNU/Linux. - ♦ linux.redhat: Red Hat Linux discussions. Book IV Chapter 2 Reading Newsgroups and RSS Feeds You have to be selective about what newsgroups you read because keeping up with all the news is impossible, even in a specific area such as Linux. When you first install and set up Linux, you might read newsgroups such as comp.os.linux.answers, comp.os.linux.setup, comp.os.linux.hardware, and comp.os.linux.x (especially if you have problems with X). After you have Linux up and running, you may want to find out about only new things happening in Linux. For such information, read the comp.os.linux.announce newsgroup. Although a number of newsgroups are currently inactive and not being added to, these groups can still be referenced and searched for help with specific questions. # Reading Newsgroups from Your ISP If you sign up with an ISP for Internet access, it can provide you with access to a news server. Such Internet news servers communicate by using the Network News Transfer Protocol (NNTP). You can use an NNTP-capable newsreader, such as KNode, to access the news server and read selected newsgroups. You can also read news by using Thunderbird. Using a newsreader is the easiest way to access news from your ISP's news server. My discussion of reading newsgroups assumes that you obtained access to a news server from your ISP. The ISP provides you with the name of the news server and any username and password needed to set up your news account on the newsreader you use. To read news, you need a *newsreader* — a program that enables you to select a newsgroup and view the items in that newsgroup. You also have to understand the newsgroup hierarchy and naming conventions (which I describe in the "Newsgroup hierarchy" section, earlier in this chapter). In this section, I show you how to read news from a news server. If you don't have access to newsgroups through your ISP, you can try using one of the many public news servers that are out there. For a list of public news servers, visit Newzbot at www.newzbot.com. At this website, you can search for news servers that carry specific newsgroups. #### Taking stock of newsreaders You can use one of several software packages to download and read newsgroups in Linux. Here are a few major newsreaders: ◆ Thunderbird: Thunderbird includes the ability to download news from an NNTP server. You can read newsgroups and post items to newsgroups. Xandros uses Thunderbird for mail and news. - ◆ KNode: This is a newsreader for KDE that you can download from knode.sourceforge.net. Debian and SUSE provide KNode as the newsreader. - ◆ Pan: Pan is a GUI newsreader that, according to the developer's website (http://pan.rebelbase.com), "attempts to be pleasing to both new and experienced users." You can download Pan for various Linux distributions from http://pan.rebelbase.com/download. If you don't find a newsreader in your Linux system, you can download and install any of these newsreaders easily in any of the Linux distributions. Often, you can locate the download site by a simple search at a search engine — just search for the word *download* followed by the name of the newsreader. #### Reading newsgroups with Thunderbird You can browse newsgroups and post articles from Thunderbird, a mail and newsreader from the Mozilla project. In many Linux distributions, the mail and news component of Thunderbird may not be installed. In that case, you have to download and install the Thunderbird mail and news component or use another newsreader. To download Thunderbird, visit www.mozillamessaging.com/thunderbird/. When you're starting to read newsgroups with Thunderbird for the first time, follow these steps to set up the news account: - 1. Choose Newsgroups from the Thunderbird menu. - A dialog box appears. - 2. In the new screen that appears, fill in your identity information name and e-mail address (as shown in Figure 2-2). Then click Next to move to the next screen. - 3. Enter your news server name and click Next. - 4. Enter a descriptive name of the newsgroup account and click Next. - 5. Click Finish to complete the newsgroup account setup. The new newsgroup account now appears in the list of accounts on the left side of the Thunderbird window, as shown in Figure 2-3. Click the newsgroup account name, and the right side of the window displays the options for the newsgroup account. Book IV Chapter 2 Newsgroups and RSS Feeds Figure 2-2: Thunderbird's Account Wizard guides you through the newsgroup account setup. Figure 2-3: Thunderbird now displays the newsgroup. If your ISP's news server requires a username and password, you're prompted for that information. After that, Thunderbird downloads the list of newsgroups and displays them in the Subscribe dialog box. (You can enter a search string in a text box to narrow the list.) When you find the newsgroups you want, click the check box to the right of their names; then click the Subscribe button to subscribe to these newsgroups and click OK to close the dialog box. After you subscribe to newsgroups, these newsgroups appear under the newsgroup account name on the left side of the Thunderbird window. You can then read a newsgroup using these steps: - 1. Click a newsgroup name (for example, comp.os.linux.announce). - 2. If prompted, enter your username and password. Some news servers require a username and password. 3. Specify the number of headers (for example, 500) you want to download and click Download to proceed. Thunderbird downloads the headers from the newsgroup and displays a list in the upper-right area of the window. 4. From the list of headers, click an item to read that article. To select other subscribed newsgroups, simply click the newsgroup's name in the left side of the window. #### Newsgroup subscriptions Unlike magazines or newspapers, newsgroups don't require that you subscribe to them; you can read any available newsgroup on the news server. The news server's administrator may decide to exclude certain newsgroups, however; if they aren't included, you can't read them. The only thing that can be called *subscribing* is indicating the newsgroups you routinely want to read. The news server doesn't receive any of this subscription information — the information is used only by the newsreader to determine what to download from the news server. #### Posting news You can use any newsreader to post a news article (a new item or a reply to an old posting) to one or more newsgroups. The command for posting a news item depends on the newsreader. For example, in the Thunderbird newsreader, you follow these steps to post an article: 1. Click the Reply button on the toolbar to post a follow-up to a news item you're reading. To post a new news article, click the Write button. A window appears where you can compose the message. Book IV Chapter 2 Newsgroups and RSS Feeds 2. Type the names of the newsgroups, just as
you'd type the addresses of recipients when sending e-mail. Enter the subject and your message. For this test posting, type **ignore** as the subject line and enter **misc.test** as the name of the newsgroup. Otherwise, any site that receives your article replies by mail to tell you the article has reached the site; that's in keeping with the purpose of the misc.test newsgroup. 3. After you finish composing the message, click Send on the toolbar. Thunderbird sends the message to the news server, which in turn sends it to other news servers, and soon it's all over the world! 4. To verify that the test message reaches the newsgroup, choose File Subscribe. Then subscribe to misc.test newsgroup (that's where you recently posted the new article). To subscribe, click the check box to the right of the group name and then click the Subscribe button. 5. Look at the latest article or one of the most recent ones in misc.test to find the article you recently posted. If you post an article and read the newsgroup immediately, you see the new article, but that doesn't mean the article has reached other sites on the Internet. After all, your posting shows up on your news server immediately because that's where you posted the article. Because of the store-and-forward model of news distribution, the news article gradually propagates from your news server to others around the world. The misc.test newsgroup provides a way to see whether your news posting is getting around. If you post to that newsgroup and don't include the word *ignore* in the subject, news servers acknowledge receipt of the article by sending an e-mail message to the address listed in the Reply To field of the article's header. #### Using KNode Debian and SUSE provide KNode as the default newsreader. Typically, you can start KNode by selecting Newsreader from the menu (look in the Internet applications); or choose Applications: Internet KNode. If you don't see a choice for Newsreader or KNode in the menus, type **knode** in a terminal window to start KNode. When KNode runs for the first time, it displays the Configure KNode dialog box through which you can configure everything you need to read newsgroups and post items to newsgroups. The left side of the dialog box displays all the items that you can configure, and the right side is where you enter the information for the item that you've selected on the left. When the Configure KNode dialog box first opens, it prompts for your personal information. Enter your identification information, such as name, e-mail address, and organization — this information is used when you post a new item to a newsgroup. Next, click Accounts on the left side and then click the Newsgroup Servers tab on the right side to set up information about the news server from which you'll be reading news. Click Add in the Newsgroup Servers tab to display the dialog box where you can enter the information about the news server. Your ISP should have provided you with the information needed to access the news server. If the news server requires a login name and a password, you must enter that information as well. After you set up the news account, the KNode window shows the name of the news server on the left. Right-click the server's name and choose Subscribe to Newsgroups from the pop-up menu. A dialog box appears where you can subscribe to selected newsgroups (such as <code>comp.os.linux.announce</code>). The first time you access this menu, the list of newsgroups must be fetched. The KNode user interface is similar to many other mail and newsreaders, including Thunderbird. # Reading and Searching Newsgroups at Websites If you don't have access to newsgroups through your ISP, you can still read newsgroups and post articles to newsgroups at a number of websites. Some of them archive old news articles and provide good search capabilities, so you can search these sites for articles related to some question you may have. The best parts about reading newsgroups through a website is that you don't even need access to a news server and you can read news from your web browser. Table 2-2 lists websites that offer free access to Usenet newsgroups. To get a list of all websites that offer newsgroup access (including the ones that charge a fee), use Google (www.google.com) and type the search words usenet newsgroup access. | Table 2-2 | Websites with Free Access to Usenet Newsgroups | |----------------|--| | Website | URL | | Google Groups | http://groups.google.com | | | | | InterBulletin | http://news.interbulletin.com | | Usenet Replaye | www.usenet-replayer.com | | | | Book IV Chapter 2 Keading Newsgroups and RSS Feeds One of the best places to read newsgroups, post articles, and search old newsgroup archives is Google Groups (Google's Usenet discussion forums) on the web at http://groups.google.com. At that website, you can select a newsgroup to browse and post replies to articles posted on various newsgroups. The best part of Google Groups is the search capability. You already know how good Google's web search is; you get that same comprehensive search capability to locate newsgroup postings that relate to your search words. To search newsgroups, fill in the search form at http://groups.google.com and press Enter. To browse newsgroups in Google Groups, ignore the search box and look at the list of high-level newsgroup categories such as alt, comp, and soc. Click the category, and you can gradually drill down to specific newsgroups. When viewing an article in Google Groups, you can click a link that enables you to post a follow-up to that article. # Reading RSS Feeds RSS stands for Really Simple Syndication. RSS is a format for *syndicating* — gathering and making available — the content of websites, primarily newsoriented sites and blogs. The term *blog* is short for weblog — a frequently updated journal with thoughts, comments, and opinions of the blog's creator. RSS can be used to provide any kind of information that can be broken down into discrete items and put into RSS format. Such RSS-formatted content is an *RSS feed*, and an RSS-aware program can check the feed periodically for changes, download new items, and make them available to the user. The RSS format is a dialect of XML (eXtensible Markup Language). All RSS files conform to XML 1.0 specification. Many versions of RSS are available, but three versions — 0.91, 1.0, and 2.0 are in widespread use. Netscape designed RSS version 0.90 for gathering and displaying headlines from news sites. A simpler version, 0.91, was proposed, and UserLand Software picked up that version for use in its blogging product. At the same time, another noncommercial group had evolved RSS 0.90 into RSS 1.0, which is based on resource description format, or RDF (see www. w3.org/rdf). UserLand didn't accept RSS 1.0 but instead continued evolving RSS 0.91 through versions 0.92, 0.93, and 0.94 and finally settled on RSS 2.0 (skipping 1.0 because that version number was already taken). Currently, many blogs and websites use RSS 0.91 for basic syndication (title, URL, and description), RSS 1.0 for readers that use RDF, and RSS 2.0 for advanced syndication with more metadata. (Think of metadata as data about data, which is what the RSS format provides: It provides data about other information, such as blogs and news.) RSS 1.0 files have an .rdf extension, whereas RSS 0.91 and 2.0 files have an .xml extension. However, all RSS files are text files that use XML tags. #### Examining an RSS Feed An RSS feed is a text file with XML tags that describe a website's content. You typically use an automated program to periodically generate the RSS feed file, but you can prepare the RSS feed file using a text editor. It's good to know what an RSS feed looks like, just so you can debug problems with the feed. The specific details of an RSS feed depend on the version of RSS. The simplest feed is RSS 0.91, and here's a typical RSS 0.91 feed: ``` <?xml version="1.0" ?> <!-- A comment line ---> <rss version="0.91"> <channel> <!--- This tag specifies general information about the feed---> <title>Title of this feed</title> <link>URL of this feed, for example, http://edulaney.typepad. com/</link> <description>Brief description of feed</description> <language>en-us</language> <title>Title of this item</title> <link>URL for this item</link> <description>Description of this item</description> </item> . . . more items . . . </channel> </rss> ``` As you can see from that listing, an RSS feed includes a channel with a title, link, description, and language followed by a series of items, each of which has a title, link, and description. The format is more verbose for RSS 1.0, which uses the RDF format. RSS 1.0 essentially provides the basic information that's in RSS 0.91 and adds more details such as item-level authors, subject, and publishing dates, which RSS 0.91 doesn't support. # Reading RSS Feeds Many GUI programs are available for subscribing to RSS feeds and reading items from a feed. These programs are RSS *aggregators* because they can gather information from many RSS feeds and make everything available in a single place. The two types of RSS aggregators are web browser plug-ins and standalone programs. Browser plug-ins, such as NewsMonster (www.newsmonster.org), run in a web browser so that the feeds appear in the web browser. Standalone programs such as GNOME Straw (http://projects.gnome.org/straw) and KDE Akregator (http://akregator.kde.org) are complete GUI applications and usually look similar to other mail and newsreader programs. Book IV Chapter 2 Newsgroups and RSS Feeds Fedora and SUSE come equipped with the Akregator program, a standalone RSS feed aggregator. To run it, look for a link in the GUI desktop's applications menu (choose Application: Internet: Akregator). If you don't see Akregator listed, type **akregator** in a terminal window. In Debian, you can install Akregator by
typing **apt-get install akregator** (after typing **su** - to become root). When Akregator first runs, it displays its main window without any RSS feeds. To subscribe to a feed, choose Feed. Add Feed from the menu or right-click All Feeds in the left pane of the window and select Add Feed from the pop-up menu. Then type the URL for the feed in the Add Feed dialog box and click OK. For example, to read Slashdot's RSS feed, type http://slashdot.org/index.rss. The feed's title appears in the left pane of the window. Click the feed title to view the items in this feed. Then you can click an item in the upperright pane, and that item appears in the lower-right pane. You can add many different RSS feeds, organize them into folders, and browse them in Akregator. # Chapter 3: Using FTP #### In This Chapter - **∠** Using an FTP client - ✓ Using any web browser as an FTP client - **✓** Getting to know the FTP commands ust as the name implies, *File Transfer Protocol* (FTP) is used to transfer files between computers. For example, if your Internet service provider (ISP) gives you space for a personal website, you may have already used FTP to upload the files making up the website. Using an FTP client on your computer, you log in to your ISP account, provide your password, and then copy the files from your home system to the ISP's server. You can also use FTP to download other files anonymously, such as open source software from other computers on the Internet — in which case, you don't need an account on the remote system to download files. You can simply log in using anonymous as the username and provide your e-mail address as the password. (In fact, your web browser can do this on your behalf, so you may not even know this process is happening.) This type of *anonymous FTP* is great for distributing files to anyone who wants them. For example, a hardware vendor might use anonymous FTP to provide updated device drivers to anyone who needs them. Linux comes with several FTP clients, both command-line ones and GUI (graphical user interface) ones. This chapter introduces you to a few GUI FTP clients and a command-line FTP client. It also describes the commands you use to work with remote directories. Depending on your Linux distribution and version, you may need to install the FTP clients discussed in this chapter. # Using Graphical FTP Clients You can use one of the following GUI FTP clients in Linux: - ♦ gFTP: A graphical FTP client for GNOME at http://qftp.seul.org. - ◆ **FileZilla:** A graphical FTP client for Linux and Windows platforms at https://filezilla-project.org. - ◆ Web browser: A browser such as Firefox, for anonymous FTP downloads For uploading files, you may want to use gFTP or FileZilla because typically you have to provide a username and password for such transfers. Web browsers work fine for anonymous downloads, which is how you typically download software from the Internet. All three GUI FTP clients are discussed in the next three sections. #### Using gFTP Some versions of GNOME come with gFTP, a graphical FTP client. gFTP isn't installed by default, but you can download it from http://gftp.seul.org and install it easily. In some distributions, gFTP may be included in a package already, and you just have to install that package. gFTP has not been updated for several years, but is still widely used and that speaks to its robustness and suitability for the job. Start gFTP, once it is installed, in the main menu, application window, or search and the gFTP window appears, similar to that shown in Figure 3-1. Figure 3-1: The gFTP window just after opening a connection to an FTP server. The gFTP window has a menu bar with menus for performing various tasks. Just below the menu bar is a toolbar with a number of buttons and text fields. Here you can type the name or IP address of the remote host, and the username and password needed to log in to the remote host. Figure 3-1 shows the gFTP window after you fill in this information and establish a connection with the remote host by clicking the button with the icon showing two computers (the leftmost one on the toolbar). To upload or download files with gFTP, follow these steps: 1. Fill in the hostname or the IP address of the remote system in the Host field. If you've used that host before, you can select it from the drop-down list that appears when you click the downward-pointing arrow next to the Host field. 2. Provide the username in the User field and the password in the Pass field, and then click the button with the icon showing two computers (to the left of the Host field). This operation causes gFTP to connect to your chosen host and to log in with the username and password you provided. The lower part of the gFTP window shows the FTP protocol messages exchanged between the two systems. 3. Observe the lower part of the screen for any indication of error messages. The directory listing of the remote system appears in the right half of the gFTP window. The left half shows the current local directory. - 4. To upload one or more files from the current system to the remote system, select the files in the list on the left and then click the right-pointing arrow button. - 5. To download files from the remote system, select the filenames in the list on the right and click the left-pointing arrow button. - 6. When you've finished transferring files, choose FTP⇔Quit. As these steps show, transferring files with a GUI FTP client, such as gFTP, is simple. Believe it or not, gFTP isn't for FTP transfers alone. It can also transfer files using the HTTP (HyperText Transfer Protocol) and do secure file transfers using the Secure Shell (SSH) protocol. Book IV Chapter 3 Using FT ## Introducing FileZilla FileZilla is another GUI FTP client for both Windows and Linux. It's very similar to gFTP, but its development continues (whereas development has stopped on gFTP). The two programs are similar in look and operations. You find FileZilla at https://filezilla-project.org (as shown in Figure 3-2). It works on all distributions, and in both GNOME and KDE. Figure 3-2: Download FileZilla from the site. When the main FileZilla window appears, it displays your home folder in a view similar to that in Windows Explorer. To connect to an FTP server, type the name or IP address of the remote host, and the username and password needed to log in to the remote host. Figure 3-3 shows the FileZilla window after you fill in this information and establish a connection with the remote host. You can now upload or download files with FileZilla just as you would gFTP, FTP transfers become just normal drag-and-drop file copying: Transfer files by simply dragging them from one system's folder and dropping them on the other system's folder. When you finish, choose File⇒Quit. ## Using a web browser as an FTP client Any web browser can act as an FTP client, but such programs are best for anonymous FTP downloads, where the web browser can log in using the anonymous username and any password. For example, you can use the Firefox web browser as an FTP client. All you have to know is how to write the URL so that the web browser can tell that you want to download a file using FTP. The syntax of the FTP URL is ftp://hostname/pathname FileZilla local and the The first part (ftp://) indicates that you want an FTP transfer. The hostname part is the name of the FTP server (the name often starts with ftp — for example, ftp.wiley.com). The pathname is the full directory path and filename of the file that you want to download. If you simply provide the hostname for the FTP server, the web browser displays the contents of the anonymous FTP directory. If you want to access anonymous FTP on your Linux system, start Firefox (click the web browser icon on the GNOME panel), type the FTP URL in the Location text box, and press Enter. Figure 3-4 shows a typical appearance of an FTP directory in Firefox. You can click folders to see their contents and download any files. You can access your local system by using Firefox's FTP capabilities; for example, type **Book IV** Chapter 3 ftp://localhost/pub/ to access the pub directory. (You won't get a response from your system if you're not running an FTP server or if you've set up your firewall so that no FTP connections are allowed.) Figure 3-4: You can use a web browser to download files from FTP servers. In Debian and Fedora, log in as root and type /etc/init.d/vsftpd start (in a terminal window) to start the FTP server. In SUSE, the xinetd super server controls the FTP server vsftpd. The /etc/xinetd.d/vsftpd configuration file specifies how vsftpd is started. (See Book VII, Chapter 1 for more information about xinetd configuration files.) The same approach of accessing anonymous FTP sites works if you type the hostname of some other anonymous FTP server. For example, try typing the following URL: ftp://ftp.netscape.com/ You get the directory of the ftp.netscape.com server. # Using the Command-Line FTP Client Knowing how to use FTP from the command line is a good idea. For example, if your GUI desktop isn't working, you may need to download some files to fix the problem; you can do so if you know how to use the command-line FTP client. The command-line FTP client is available in all Linux distributions and using it isn't difficult. The best way to figure out the command-line FTP client is to try it out. The command is ftp, and you can try out the ftp commands from your Linux system. You don't even need an Internet connection because you can use the ftp command to connect to your own system. Note that the output from the ftp command might be different because some distributions, such as Debian, use a text mode version of gFTP as the command-line FTP client. In the following sample FTP session, the command-line FTP client was used to log in and browse the directories on a Linux system. Here's the listing illustrating interaction with a typical command-line FTP client: #### ftp
localhost ``` Connected to localhost.localdomain. 220 (vsFTPd 2.0.3) Name (localhost:jdoe): (press Enter.) 331 Please specify the password. Password: (enter the password for the user.) 230 Login successful. Remote system type is Unix. Using binary mode to transfer files. ftp> help Commands may be abbreviated. Commands are: ! debug mdir gc send $ dir mget sendport site account disconnect mkdir put size append exit mls pwd status ascii form mode quit struct bell get modtime quote system binary glob mput recv sunique bye hash newer reget tenex case help nmap rstatus tick cd idle nlist rhelp trace cdup image ntrans rename type chmod lcd open reset user close ls prompt restart umask cr macdef passive rmdir verbose delete mdelete proxy runique ? ftp> help mget (to get help on a specific command.) mget get multiple files ftp> cd /var (This changes directory to /var.) 250 Directory successfully changed. ftp> ls (This command lists the contents of the directory.) 227 Entering Passive Mode (127,0,0,1,38,142) 150 Here comes the directory listing. . . . lines deleted . . 226 Directory send OK. ftp> bye (This command ends the session.) ``` Book IV Chapter 3 Using FTI As the listing shows, you can start the command-line FTP client by typing the command **ftp** *hostname*, where *hostname* is the name of the system you want to access. When the FTP client establishes a connection with the FTP server at the remote system, the FTP server prompts you for a username and password. After you supply the information, the FTP client displays the ftp> prompt, and you can begin typing commands to perform specific tasks. If you can't remember a specific FTP command, type **help** to view a list of them. You can get additional help for a specific command by typing **help** *command*, where *command* is the command for which you want help. Many FTP commands are similar to the Linux commands for navigating the file system. For example, cd changes directory, pwd prints the name of the current working directory, and 1s lists the contents of the current directory. Two other common commands are get and put: get is what downloads a file from the remote system to your system, and put uploads (sends) a file from your system to the remote host. Table 3-1 describes some commonly used FTP commands. You don't have to type the entire FTP command. For a long command, you have to type only the first few characters — enough to identify the command uniquely. For example, to delete a file, you can type **dele**, and to change the file transfer mode to binary, you can type **bin**. | Table 3-1 | Common FTP Commands | |-----------|--| | Command | Description | | ! | Executes a shell command on the local system. For example, ! ls lists the contents of the current directory on the local system. | | ? | Displays a list of commands (same as help). | | append | Appends a local file to a remote file. | | ascii | Sets the file transfer type to ASCII (or plain text). This command is the default file transfer type. | | binary | Sets the file transfer type to binary. | | bye | Ends the FTP session with the remote FTP server and quits the FTP client. | | cd | Changes the directory on the remote system. For example, cd/pub/Linux changes the remote directory to /pub/Linux. | | chmod | Changes the permission settings of a remote file. For example, chmod 644 index.html changes the permission settings of the index.html file on the remote system. | | close | Ends the FTP session with the FTP server and returns to the FTP client's prompt. | | Command | Description | | |------------|---|--| | delete | Deletes a remote file. For example, delete bigimage. jpg deletes that file on the remote system. | | | dir | Lists the contents of the current directory on the remote system. | | | disconnect | Ends the FTP session and returns to the FTP client's prompt. (This command is the same as close.) | | | get | Downloads a remote file. For example, get junk.tar. gz junk.tgz downloads the file junk.tar.gz from the remote system and saves it as the file junk.tgz on the local system. | | | hash | Turns on or off the hash mark (#) printing that shows the progress of the file transfer. When this feature is turned on, a hash mark prints onscreen for every 1,024 bytes transferred from the remote system. (It's the command-line version of a progress bar.) | | | help | Displays a list of commands. | | | image | Same as binary. | | | lcd | Changes the current directory on the local system. For example, lcd/var/ftp/pub changes the current local directory to /var/ftp/pub. | | | ls | Lists the contents of the current remote directory. | | | mdelete | Deletes multiple files on a remote system. For example, mdelete *.jpg deletes all remote files with names ending in .jpg in the current directory. | | | mdir | Lists multiple remote files and saves the listing in a specified local file. For example, mdir /usr/share/doc/w*wlist saves the listing in the local file named wlist. | | | mget | Downloads multiple files. For example, mget *.jpg downloads all files with names ending in .jpg. If the prompt is turned on, the FTP client asks for confirmation before downloading each file. | | | mkdir | Creates a directory on the remote system. mkdir images creates a directory named images in the current directory on the remote system. | | | mls | Same as mdir. | | | mput | Uploads multiple files. For example, mput *.jpg sends all files with names ending in .jpg to the remote system. If the prompt is turned on, the FTP client asks for confirmation before sending each file. | | Book IV Chapter 3 Using FTF | Table 3-1 (co | Description | | |---------------|---|--| | open | Opens a connection to the FTP server on the specified host. For example, open ftp.netscape.com connects to the FTP server on the host ftp.netscape.com. | | | prompt | Turns the prompt on or off. When the prompt is on, the FTP client prompts you for confirmation before downloading or uploading each file during a multiple-file transfer. | | | put | Sends a file to the remote system. For example, put index.html sends the index.html file from the local system to the remote system. | | | pwd | Displays the full pathname of the current directory on the remote system. When you log in as a user, the initial current working directory is your home directory. | | | quit | Same as bye. | | | recv | Same as get. | | | rename | Renames a file on the remote system. For example, rename old.html new.html renames the file old.html to new.html on the remote system. | | | rmdir | Deletes a directory on the remote system. For example, rmdir images deletes the images directory in the current directory of the remote system. | | | send | Same as put. | | | size | Shows the size of a remote file. For example, size bigfile.tar.gz shows the size of that remote file. | | | status | Shows the current status of the FTP client. | | | user | Sends new user information to the FTP server. For example, user jdoe sends the username jdoe; the FTP server then prompts for the password for that username. | | When downloading files from the Internet, you almost always want to transfer the files in binary mode because the software is usually archived and compressed in a binary form. (Its files aren't plain text files.) So always use the binary command to set the mode to binary. Then use the get command to download the files. When transferring multiple files with similar names (such as image1.jpg, image2.jpg, and so on), type **prompt** to turn off prompting. (Otherwise the FTP client will ask you after each file transfer whether you want to transfer the next file.) Then type **mget** followed by the filename with a wildcard character. For example, to download all files with names starting with image and ending with the .jpg extension, type **mget image*.jpg**. # Chapter 4: Hosting Internet Services ## In This Chapter - **✓** Finding out about Internet services - Controlling servers through inetd or xinetd - ✓ Using chkconfig or update-rc.d to manage servers - ✓ Using GUI utilities to configure services to start at boot time The Internet is a world of clients and servers. Clients make requests to servers, and servers respond to the requests. For example, your web browser is a client that downloads information from web servers and displays it to you. Of course, the clients and servers are computer programs that run on a wide variety of computers. A Linux system is an ideal system to run different types of servers — from a web server to a Windows file and print server. This chapter provides an overview of a typical Internet service and its client/server architecture, and discusses how to manage the servers in Linux. You can use the information in this chapter to manage any server running on your Linux system. # Understanding Internet Services *Internet services* are network applications designed to deliver information from one system to another. By design, each Internet service is implemented in two parts — a *server* that provides information and one or more *clients* that request information. Such a *client/server* architecture is the most common way to build distributed information systems. The clients and servers are computer programs that run on these computers and communicate through the network. The neat part is that you can run a client at your desktop computer and access information from a server running on a
computer anywhere in the world (as long as it's on the Internet). The web itself, e-mail, and FTP (File Transfer Protocol) are examples of Internet services that use the client/server model. For example, when you use the web, you use the web browser client to download and view web pages from the web server. Client/server architecture requires clients to communicate with the servers. That's where the *Transmission Control Protocol/Internet Protocol* — TCP/IP — comes in. TCP/IP provides a standard way for clients and servers to exchange packets of data. The next few sections explain how TCP/IP-based services communicate. ## TCP/IP and sockets Client/server applications such as the web and FTP use TCP/IP for data transfers between client and server. These Internet applications typically use TCP/IP communications utilizing the *Berkeley sockets interface* (so named because the socket interface was introduced in Berkeley Unix around 1982). The sockets interface is nothing physical — it's simply some computer code that a computer programmer can use to create applications that can communicate with other applications on the Internet. Even if you don't write network applications using sockets, you may have to use or set up many network applications. Knowledge of sockets can help you understand how network-based applications work, which in turn helps you find and correct any problems with these applications. #### Socket definition Network applications use sockets to communicate over a TCP/IP network. A *socket* represents one end-point of a connection. Because a socket is bidirectional, data can be sent as well as received through it. A socket has three attributes: - ♦ The network address (the IP address) of the system - ◆ The *port number*, identifying the process (a *process* is a computer program running on a computer) that exchanges data through the socket - ◆ The type of socket, identifying the protocol for data exchange Essentially, the IP address identifies a computer (host) on the network; the port number identifies a process (server) on the node; and the socket type determines the manner in which data is exchanged — through a connection-oriented (stream) or connectionless (datagram) protocol. #### Connection-oriented protocols The socket type indicates the protocol being used to communicate through the socket. A connection-oriented protocol works like a normal phone conversation. When you want to talk to your friend, you have to dial your friend's phone number and establish a connection before you can have a conversation. In the same way, connection-oriented data exchange requires both the sending and receiving processes to establish a connection before data exchange can begin. In the TCP/IP protocol suite, TCP — *Transmission Control Protocol* — supports a connection-oriented data transfer between two processes running on two computers on the Internet. TCP provides reliable two-way data exchange between processes. As the name TCP/IP suggests, TCP relies on IP — *Internet Protocol* — for delivery of packets. IP does not guarantee delivery of packets; nor does it deliver packets in any particular sequence. IP does, however, efficiently move packets from one network to another. TCP is responsible for arranging the packets in the proper sequence, detecting whether errors have occurred, and requesting retransmission of packets in case of an error. TCP is useful for applications intended to exchange large amounts of data at a time. In addition, applications that need reliable data exchange use TCP. (For example, FTP uses TCP to transfer files.) In the sockets model, a socket that uses TCP is referred to as a *stream socket*. #### Connectionless protocols A *connectionless* data-exchange protocol does not require the sender and receiver to explicitly establish a connection. It's like shouting to your friend in a crowded room — you can't be sure that your friend hears you. In the TCP/IP protocol suite, the *User Datagram Protocol* (UDP) provides connectionless service for sending and receiving packets known as *datagrams*. Unlike TCP, UDP does not guarantee that datagrams ever reach their intended destinations. Nor does UDP ensure that datagrams are delivered in the order they're sent. UDP is used by applications that exchange small amounts of data at a time or by applications that don't need the reliability and sequencing of data delivery. For example, SNMP (Simple Network Management Protocol) uses UDP to transfer data. In the sockets model, a socket that uses UDP is referred to as a *datagram* socket. #### Sockets and the client/server model Two sockets are needed to complete a communication path. When two processes communicate, they use the client/server model to establish the connection. (Figure 4-1 illustrates the concept.) The server application listens on a specific port on the system — the server is completely identified by the IP address of the system where it runs and the port number where it listens for connections. The client initiates a connection from any available port and tries to connect to the server (identified by the IP address and port number). When the connection is established, the client and the server can exchange data according to their own protocol. Book IV Chapter 4 > Hosting Interne Services The sequence of events in socket-based data exchanges depends on whether the transfer is connection-oriented (TCP) or connectionless (UDP). For a connection-oriented data transfer using sockets, the server listens on a specific port, waiting for clients to request connection. Data transfer begins only after a connection is established. For connectionless data transfers, the server waits for a datagram to arrive at a specified port. The client does not wait to establish a connection; it simply sends a datagram to the server. Regardless of whether it's a server or a client, each application first creates a socket. Then it *associates* (binds) the socket with the local computer's IP address and a port number. The IP address identifies the machine (where the application is running), and the port number identifies the application using the socket. Servers typically listen to a well-known port number so that clients can connect to that port to access the server. For a client application, the process of binding a socket to the IP address and port is the same as that for a server, but the client can use 0 as the port number — the sockets library automatically uses an unused port number for the client. For a connection-oriented stream socket, the communicating client and server applications have to establish a connection. The exact steps for establishing a connection depend on whether the application is a server or a client. In the client/server model, the server has to be up and running before the client can run. After creating a socket and binding the socket to a port, the server application sets up a queue of connections, which determines how many clients can connect to the server. Typically, a server listens to anywhere from one to five connections. However, the size of this *listen queue* is one of the parameters you can adjust (especially for a web server) to ensure that the server responds to as many clients as possible. After setting up the listen queue, the server waits for a connection from a client. Establishing the connection from the client side is somewhat simpler. After creating a socket and binding the socket to an IP address, the client establishes a connection with the server. To make the connection, the client must know the hostname or IP address of the server, as well as the port on which the server accepts connection. All Internet services have well-known standard port numbers. After a client establishes a connection to a server via a connection-oriented stream socket, the client and server can exchange data by calling the appropriate sockets' API functions. Like a conversation between two persons, the server and client alternately send and receive data — the meaning of the data depends on the message protocol that the server and clients use. Usually, a server is designed for a specific task; inherent in that design is a message protocol that the server and clients use to exchange necessary data. For example, the web server and the web browser (client) communicate using HTTP (HyperText Transfer Protocol). ## Internet services and port numbers The TCP/IP protocol suite is the lingua franca of the Internet because the Internet services *speak* TCP/IP. These services make the Internet tick by making possible the transfer of mail, news, and web pages. Each Internet service has its own protocol that relies on TCP/IP for the actual transfer of the information. Each service also has one or more assigned port numbers that it uses to do whatever it's designed to do. Here are some well-known Internet services and their associated protocols: - ◆ DHCP (Dynamic Host Configuration Protocol): Dynamically configures TCP/IP network parameters on a computer. DHCP is used, primarily, to assign dynamic IP addresses and other networking information such as name server, default gateway, and domain names that are needed to configure TCP/IP networks. The DHCP server listens on port 67. - ◆ FTP (File Transfer Protocol): Transfers files between computers on the Internet. FTP uses two ports: Data is transferred on port 20, and control information is exchanged on port 21. - ◆ HTTP (HyperText Transfer Protocol): Sends documents from one system to another. HTTP is the underlying protocol of the web. By default, the web server and client communicate on port 80. Book IV Chapter 4 > Hosting Interne Services - ◆ SMTP (Simple Mail Transfer Protocol): Exchanges e-mail messages between systems. SMTP uses port 25 for information exchange. - ◆ NNTP (Network News Transfer Protocol): Distributes news articles in a store-and-forward fashion across the Internet. NNTP uses port 119. - ◆ SSH (Secure Shell): Enables secure remote
login and other secure network services over an insecure network. SSH uses port 22. - ◆ TELNET: Enables a user on one system to log in to another system on the Internet. (The user must provide a valid user ID and password to log in to the remote system.) TELNET uses port 23 by default, but the TELNET client can connect to any specified port. - ◆ NFS (Network File System): Shares files among computers. NFS uses Sun's Remote Procedure Call (RPC) facility, which exchanges information through port 111. - ◆ NTP (Network Time Protocol): Synchronizes the system time on a client computer with that on a server that has a more accurate clock. NTP uses port 123. - ◆ SNMP (Simple Network Management Protocol): Manages all types of network devices on the Internet. Like FTP, SNMP uses two ports: 161 and 162. - ◆ TFTP (Trivial File Transfer Protocol): Transfers files from one system to another. (It's typically used by X terminals and diskless workstations to download boot files from another host on the network.) TFTP data transfer takes place on port 69. Each service is provided by a *server process* — a computer program that runs on a system awaiting client requests that arrive at the well-known port associated with its service. Thus the web server expects client requests at port 80, the standard port for HTTP service. The /etc/services text file on your Linux system stores the association between a service name and a port number (as well as a protocol). Here is a small subset of entries in the /etc/services file from a Linux system: ``` ftp-data 20/tcp ftp 21/tcp fsp 21/udp fspd ssh 22/tcp # SSH Remote Login Protocol ssh 22/udp telnet 23/tcp smtp 25/tcp mail time 37/tcp timserver time 37/udp timserver rlp 39/udp resource # resource location nameserver 42/tcp name # IEN 116 whois 43/tcp nicname tacacs 49/tcp # Login Host Protocol (TACACS) ``` A quick look through the entries in the /etc/services file shows the breadth of networking services available under TCP/IP. Port number 80 is designated for web services. In other words, if you set up a web server on your system, that server listens to port 80. By the way, IANA — the Internet Assigned Numbers Authority (www.iana.org) — is the organization responsible for coordinating the assignment of port numbers below 1,024. ## Using the Internet Super Server The client/server architecture of Internet services requires that the server be up and running before a client makes a request for service. It's probably a bad idea to run all the servers all the time — doing so is impractical because each server process uses up system resources in the form of memory and processor time. Besides, you don't really need *all* the services up and ready at all times. Instead, run a single server that listens to all the ports and then starts the appropriate server when a client request comes in. Such a server is known as the *Internet super server* because it starts various services on demand. The two Internet super servers are inetd and xinetd. The inetd server is the older one and is still used in some Linux distributions such as Debian, Knoppix, Ubuntu, and Xandros. The xinetd server is a replacement for inetd, offering improved access control and logging. The name xinetd stands for *extended* inetd. Distributions such as Fedora and SUSE use xinetd. ## Using inetd In Linux distributions that use inetd, the system starts inetd when the system boots. The inetd server reads a configuration file named /etc/inetd.conf at startup. This file tells inetd which ports to listen to and what server to start for each port. For example, the entry in the /etc/inetd.conf file that starts the IMAP (Internet Message Access Protocol) on one server looks like this: imaps stream tcp nowait root /usr/sbin/tcpd /usr/sbin/imapd The first item on this line, imaps, tells inetd the name of the service. inetd uses this name to look up the port number from the /etc/services file. If you type **grep imaps /etc/services**, you find that the port number of the IMAP service is 993. This tells inetd to listen to port 993 for FTP service requests. The rest of the fields on the IMAP entry have the following meanings: ◆ The second and third fields of the entry, stream and tcp, tell inetd that the FTP service uses a connection-oriented TCP socket to communicate with the client. For services that use the connectionless UDP sockets, these two fields are dgram and udp. Book IV Chapter 4 > Hosting Internet Services - ◆ The fourth field, nowait, tells inetd to start a new server for each request. If this field is wait, inetd waits until the server exits before starting the server again. - ◆ The fifth field provides the user ID that inetd uses to run the server. In this case, the server runs the FTP server as root. - ♦ The sixth field specifies the program to run for this service and the last field is the argument that inetd passes to the server program. In this case, the /usr/sbin/tcpd program is provided /usr/sbin/imapd as an argument. The /usr/sbin/tcpd program is an access-control facility, or a *TCP wrapper*, for Internet services. Because unnecessary Internet services are often the sources of security vulnerabilities, you may want to turn off any unneeded services or at least control access to the services. The tcpd program can start other services, such as FTP and TELNET, but before starting the service, tcpd consults the /etc/hosts.allow file to see if the host requesting service is allowed that service. If nothing is in /etc/hosts.allow about that host, tcpd checks the /etc/hosts.deny file to see if the service should be denied. If both files are empty, tcpd allows the host access to the requested service. You can place the line ALL:ALL in the /etc/hosts.deny file to deny all hosts access to any Internet services. Browse through the /etc/inetd.conf file on your system to find out the kinds of services that inetd is set up to start. Nowadays, most inetd services are turned off, and many others, such as FTP, are started by standalone servers. In any case, if you should see any services that you want to turn off, simply place a hash mark (#) at the beginning of the lines that start these services. When you make such a change to the /etc/inetd.conf file, type /etc/init.d/inetd restart to restart the inetd server. ## Using xinetd Linux distributions that use xinetd start xinetd when the system boots. The xinetd server reads a configuration file named /etc/xinetd.conf at startup. This file tells xinetd which ports to listen to and what server to start for each port. The file can contain instructions that include other configuration files. In Linux, the /etc/xinetd.conf file looks like the following: ``` # Simple configuration file for xinetd # # Set some defaults and include /etc/xinetd.d/ defaults { instances = 30 log_type = FILE /var/log/xinetd.log log_on_success = HOST EXIT DURATION log_on_failure = HOST ATTEMPT cps = 50 10 } includedir /etc/xinetd.d ``` Comment lines begin with the hash mark (#). The defaults block of attributes, enclosed in curly braces ({ . . . }), specifies default values for some attributes. These default values apply to all other services in the configuration file. The instances attribute is set to 30, which means that no more than 30 servers can be simultaneously active for any service. The last line in the /etc/xinetd.conf file uses the includedir directive to include all files inside the /etc/xinetd.d directory, excluding files that begin with a period (.). The idea is that the /etc/xinetd.d directory contains all service-configuration files — one file for each type of service the xinetd server is expected to manage. Type **ls /etc/xinetd.d** to see the xinetd configuration files for your system. Each file in /etc/xinetd.d specifies attributes for one service that xinetd can start. For example, SUSE Linux uses xinetd to start some services, including the vsftpd (Very Secure FTP daemon) server. (A *daemon* is a process that runs continuously and never dies.) Type **cat** /**etc/xinetd.d/vsftpd** to see the xinetd configuration for the vsftpd service. Here's a typical listing of that file on a SUSE system: ``` # default: off # description: # The vsftpd FTP server serves FTP connections. It uses # normal, unencrypted usernames and passwords for authentication. # vsftpd is designed to be secure. service ftp { socket_type = stream protocol = tcp wait = no user = root server = /usr/sbin/vsftpd } ``` The filename (in this case, vsftpd) can be anything; what matters is the service name that appears next to the service keyword in the file. In this case, the line service ftp tells xinetd the name of the service. xinetd uses this name to look up the port number from the /etc/services file. The attributes in /etc/xinetd.d/vsftpd, enclosed in curly braces ($\{ \ . \ . \ . \ \}$), have the following meanings: - ◆ The socket_type attribute is set to stream, which tells xinetd that the FTP service uses a connection-oriented TCP socket to communicate with the client. For services that use the connectionless UDP sockets, this attribute is set to dgram. - ◆ The wait attribute is set to no, which tells xinetd to start a new server for each request. If this attribute is set to yes, xinetd waits until the server exits before starting the server again. - ◆ The user attribute provides the user ID that xinetd uses to run the server. In this case, the server runs the TELNET server as root. Book IV Chapter 4 > Hosting Interne Services ♦ The server attribute specifies the program to run for this service. In this case, xinetd runs the /usr/sbin/vsftpd program to provide the FTP service. Browse through the files in the /etc/xinetd.d directory on your Linux system to find out the kinds of services xinetd is set up to start. If you want to turn off any service (many are already disabled), you can do so by editing the configuration file for that service and adding the following line inside the curly braces that enclose all attributes:
disable = yes When you make such a change to the xinetd configuration files, you must restart the xinetd server by typing the following command: /etc/init.d/xinetd restart You can typically configure services to run under xinetd or as a standalone service. For example, SUSE starts the Very Secure FTP daemon (vsftpd) under the control of xinetd. Debian and Fedora, however, run vsftpd as a standalone server. # Running Standalone Servers Starting servers through inetd or xinetd is a smart approach but not always efficient. A web server controlled by inetd or xinetd would be started often because every time a user clicks a link on a web page, a request arrives for the web service. For such high-demand services, starting the server in a standalone manner is best. In standalone mode, the server can run as a daemon. That means the server listens on the assigned port, and whenever a request arrives, the server handles it by making a copy of itself. In this way, the server keeps running as long as the machine is running — in theory, forever. A more efficient strategy, used for web servers, is to run multiple copies of the server and let each copy handle some of the incoming requests. You can easily configure your Linux system to start various standalone servers automatically, as shown in this section. ## Starting and stopping servers manually To start a service that's not running, use the server command. For example, if the web server (called httpd in Fedora) isn't running, you can start it by issuing a special shell script with the following command: /etc/init.d/httpd start That command runs the /etc/init.d/httpd script with start as the argument. If the httpd server is already running and you want to stop it, run the same command with stop as the argument, like this: /etc/init.d/httpd stop To stop and start a server again, just use restart as the argument: /etc/init.d/httpd restart You can also check the status of any service by using status as the argument: /etc/init.d/httpd status In Debian, Ubuntu, and SUSE, where the web server program is called apache2, type /etc/init.d/apache2 start to start the web server. In Knoppix and Xandros, type /etc/init.d/apache start. Use that same command with arguments stop or restart to stop the web server or restart it. What are all the services that you can start and stop? Well, the answer is in the files in the /etc/init.d directory. To get a look at it, type the following command: ls /etc/init.d All the files you see listed in response to this command are the services installed on your Linux system — and you can start and stop them as needed. You typically find 65 to 70 services listed in the /etc/init.d directory. ## Starting servers automatically at boot time You can start, stop, and restart servers manually by using the scripts in the /etc/init.d directory, but you want some of the services to start as soon as you boot the Linux system. You can configure servers to start automatically at boot time by using a graphical server-configuration utility or a command. The command for configuring services to start automatically depends on the distribution. In Debian, Knoppix, Ubuntu, and Xandros, use the update-rc.d command. In Fedora and SUSE, use the chkconfig command. Both commands are explained in the following sections. ## Using the chkconfig command in Fedora and SUSE The chkconfig program is a command-line utility in Fedora and SUSE for checking and updating the current setting of servers in Linux. Various combinations of servers are set up to start automatically at different run levels. Each *run level* represents a system configuration in which a selected set of processes runs. You're usually concerned about run levels 3 and 5 because run level 3 is for text mode login and run level 5 is for logging in through a graphical interface. Book IV Chapter 4 > Hosting Interne Services The chkconfig command is simple to use. For example, suppose that you want to automatically start the named server at run levels 3 and 5. All you have to do is log in as root and type the following command at the shell prompt: ``` chkconfig --level 35 named on ``` To see the status of the named server, type the following command: ``` chkconfig --list named ``` You see a line of output similar to the following: ``` named 0:off 1:off 2:off 3:on 4:off 5:on 6:off ``` The output shows you the status of the named server at run levels 0 through 6. As you can see, named is set to run at run levels 3 and 5. If you want to turn off named, you can do so with this command: ``` chkconfig --level 35 named off ``` You can use chkconfig to see the status of all services, including the ones started through xinetd. For example, you can view the status of all services by typing the following command: ``` chkconfig --list | more ``` The output shows the status of each service for each of the run levels from 0 through 6. For each run level, the service is either on or off. At the very end of the listing, chkconfig displays a list of the services that xinetd controls. Each xinetd-based service is also marked on or off, depending on whether xinetd is configured to start the service. ## Using the update-rc.d command in Debian, Knoppix, Ubuntu, and Xandros In Debian, Knoppix, Ubuntu, and Xandros, you can use the update-rc.d command to set up services that should start when the system boots at specific boot levels. The easiest way to set up is to use the defaults option in a command of this form: ``` update-rc.d service defaults ``` where *service* is the name of the script file in the /etc/init.d directory that starts and stops the service, among other things. When you use the defaults option, update-rc.d sets up *symbolic links* — shortcuts, in other words — to start the service in run levels 2, 3, 4, and 5 and stop the service in run levels 0, 1, and 6. A sequence number controls the order in which each service is started. (Services with smaller sequence numbers start before those with larger sequence numbers, and the numbers typically range from 00 through 99.) If you do not specify a sequence number explicitly, update-rc.d uses a sequence number of 20 when you use the defaults option. You can also start and stop a service at specific run levels as well as in a specific sequence. For example, to start a service at run levels 2 and 5 at a sequence number of 85 and stop it at run levels 0, 1, and 6 at a sequence of 90, use the following command: ``` update-rc.d service start 85 2 5 . stop 90 0 1 6 . ``` Remember that service must be the name of a script file in the /etc/init.d directory. If you need to stop a service from starting at system startup, type **update-rc.d-f** *service* remove in a terminal window, where *service* is the name of the script file in /etc/init.d that starts or stops that service. #### Using a GUI service-configuration utility If you don't like typing commands, you may be able to use a GUI tool to configure the services. Fedora and SUSE include tools such as YaST and the service-configuration utility to manage the services. The service-configuration utility shows the names of services in a scrolling list. Each line in the list shows the name of a service with a check box in front of the name. A check mark in the box indicates that the service is selected to start at boot time for the current run level. When the dialog box first appears, many services are already selected. You can scroll up and down the list and click the check box to select or deselect a service. If you click the check box, the check mark alternately turns on and off. Additionally, the utility also shows you whether the selected service is currently running. After you select all the servers you want to start when the system boots, click the Apply button on the toolbar to save the changes. By default, the service-configuration utility configures the selected services for the current run level. That means if you're selecting services from the graphical desktop, the system is in run level 5 and the services you configure are set to start at run level 5. If you want to set up the services for a different level, choose that run level from the Edit Runlevel menu. Table 4-1 shows a list of the services, along with a brief description of each one. The first column shows the name of the service, which is the same as the name of the program that has to run to provide the service. You may Book IV Chapter 4 > Hosting Interne Services not see all these services listed when you run the GUI service-configuration utility on your system because the exact list of services depends on what is installed on your Linux system. | Table 4-1 Some Common Services in Linux | | | |---|--|--| | Service Name | Description | | | acpid | Listens to Advanced Configuration and Power Interface (ACPI) events from the kernel and notifies other programs when such events occur. ACPI events can occur when the kernel puts the computer into a low-power state (for example, standby mode) to save energy. | | | apache, apache2, or httpd | Runs the Apache World Wide Web (WWW) server. | | | apmd | Monitors the Advanced Power Management (APM) BIOS and logs the status of electric power (AC or battery backup). | | | atd | Runs commands scheduled by the at and cron commands. | | | autofs | Automatically mounts file systems (for example, when you insert a CD-ROM in the CD-ROM drive) | | | cron or crond | Runs user-specified programs according to a peri-
odic schedule set by the crontab command. | | | gpm | Enables the use of the mouse in text mode screens. | | | innd | The InterNetNews daemon — the Internet news server you can use to support local newsgroups on your system. | | | isdn |
Starts and stops ISDN (Integrated Services Digital Network) services — a digital communication service over regular phone lines (enable only if you have ISDN service). | | | named | Translates hostnames into IP addresses. named is a server for the Domain Name System (DNS). You can run a copy on your system if you want. | | | network or
networking | Enables you to activate or deactivate all network interfaces configured to start at system-boot time | | | nfs or nfsserver | Enables sharing of file systems specified in the /etc/exports file using the Network File System (NFS) protocol. | | | Service Name | Description | |-----------------------------|---| | nfslock | Provides file-locking capability for file systems exported using the Network File System (NFS) protocol, so other systems (running NFS) can share files from your system. | | pcmcia | Provides support for PCMCIA devices. | | portmap | Works with any software that relies on Remote Procedure Calls (RPC). For example, NFS requires the portmap service. | | samba, smb, or smbfs | Starts and stops the Samba smbd and nmbd services, which support LAN Manager services on a Linux system. | | sendmail | Moves mail messages from one machine to another. Start this service if you want to send mail from your Linux system. If you don't plan to use your Linux system as a mail server, don't start the sendmail server because it can slow down the booting process and consume resources unnecessarily. | | snmpd | Manages networks. snmpd stands for Simple
Network Management Protocol daemon. | | spamassassin | Runs spamd — the SpamAssassin mail filter program. | | ssh or sshd | Runs the OpenSSH (Secure Shell) secure remote login facility. | | syslog o r syslogd | Logs various error and status messages in a log file (usually, the /var/log/messages file). This service is used by many other programs (including other services). Always run this service. | | vsftpd | Transfers files using the File Transfer Protocol (FTP). vsftpd stands for Very Secure FTP daemon. | | winbind | Starts and stops the Samba winbindd server, which provides a name-switch capability similar to that provided by the /etc/nsswitch.conf file. | | xfs | Starts and stops the X font server. | | xinetd | Starts other Internet services, such as TELNET and FTP, whenever they are needed. This server is the Internet super server, a replacement for the older inetd. | | ypbind | Runs on Network Information System (NIS) clients and binds the clients to an NIS domain. You don't have to start <code>ypbind</code> unless you're using NIS. | Book IV Chapter 4 # Chapter 5: Managing Mail and News Servers ## In This Chapter - ✓ Installing and using sendmail - ✓ Testing mail delivery manually - Configuring sendmail - ✓ Installing the InterNetNews (INN) server - Configuring and starting INN - Setting up local newsgroups Lectronic mail (e-mail) is one of the popular services available on Internet hosts. E-mail software comes in two parts: a *mail transport agent (MTA)*, which physically sends and receives mail messages, and a *mail user agent (MUA)*, which reads messages and prepares new messages. This chapter describes the e-mail service and shows you how to configure the sendmail server on a Linux PC. Internet newsgroups provide another convenient way, besides e-mail, to discuss various topics and share your knowledge with others. Linux comes with the software you need to read newsgroups and set up your own system as a news server. This chapter also describes how to configure and run the popular InterNetNews server and shows how to set up local newsgroups for your corporate intranet (or even your home network). # Installing the Mail Server Depending on the choices you made during Linux installation, you may have already installed the mail server software on your system. You can choose from several mail servers, such as <code>exim</code>, <code>postfix</code>, and <code>sendmail</code> — <code>sendmail</code> is briefly covered in this chapter. If <code>sendmail</code> is not installed, you can easily install it. ## Using sendmail To set up your system as a mail server, you must configure the sendmail mail transport agent properly. sendmail has the reputation of being a complex but complete mail-delivery system. Just one look at sendmail's configuration file — /etc/mail/sendmail.cf in Fedora or /etc/sendmail.cf in SUSE — can convince you that sendmail is indeed complex. Luckily, you don't have to be an expert on the sendmail configuration file. All you need is one of the predefined configuration files — such as the one installed on your system — to use sendmail. Your system already has a working sendmail configuration file — /etc/mail/sendmail.cf. The default file assumes you have an Internet connection and a name server. Provided that you have an Internet connection and that your system has an official domain name, you can send and receive e-mail from your Linux PC. To ensure that mail delivery works correctly, your system's name must match the system name that your ISP has assigned to you. Although you can give your system any hostname you want, other systems can successfully deliver mail to your system only if your system's name is in the ISP's name server. ## A mail-delivery test To try the sendmail mail transfer agent, you can use the mail command to compose and send a mail message to any user account on your Linux system. As a test, compose a message and send it to yourself. For example, here's how to send a message using the mail command. (Input appears in boldface.) ``` mail edulaney Subject: Testing e-mail This is from my Linux system. ``` The mail command is a simple mail user agent. In the preceding example, the addressee (edulaney) is specified in the command line. The mail program prompts for a subject line. Following the subject, enter the message and end it with a line that contains only a period. You will be prompted for a Cc:, but leave that blank. After ending the message, the mail user agent passes the message to sendmail (the mail transport agent) for delivery to the specified address. sendmail delivers the mail message immediately. To verify the delivery of mail, type mail to run the mail command again and read the message. If any of your mail server software is not properly installed, you should be prompted during this test to install any needed components and resolve the problem. Thus the initial sendmail configuration file is adequate for sending and receiving e-mail, at least within your Linux system. External mail delivery also works, provided that your Linux system has an Internet connection and a registered domain name. If you have an ISP account that provides your Linux system with a dynamic IP address, you have to use a mail client such as Evolution or Mozilla Mail, which contacts your ISP's mail server to deliver outbound e-mail. ## The mail-delivery mechanism On an Internet host, the sendmail mail transport agent delivers mail using the Simple Mail Transfer Protocol (SMTP). SMTP-based mail transport agents listen to TCP port 25 and use a small set of text commands to exchange information with other mail transport agents. SMTP commands are simple enough that you can use them manually from a terminal to send a mail message. The telnet command opens a TELNET session to port 25 (the port on which sendmail expects SMTP commands). The sendmail process on the Linux system immediately replies with an announcement. You can type **HELP** to view a list of SMTP commands. To get help on a specific command, type **HELP** commandname. Type **HELO** localhost to initiate a session with the host. The <code>sendmail</code> process replies with a greeting. To send the mail message, start with the <code>MAIL FROM</code>: command, which specifies the sender of the message. Next, use the <code>RCPT TO</code>: command to specify the recipient of the message. If you want to send the message to several recipients, provide each recipient's address with the <code>RCPT TO</code>: command. To enter the mail message, use the DATA command. In response to the DATA command, sendmail displays an instruction that you have to end the message with a period on a line by itself. After you do so and end the message, the sendmail process displays a message indicating that the message is accepted for delivery. You can then quit the sendmail session with the QUIT command. ## The sendmail configuration file You don't have to understand everything in the sendmail configuration file, sendmail.cf, but you need to know how that file is created. That way, you can make minor changes if necessary and regenerate the sendmail.cf file. In SUSE, you can configure sendmail through the YaST Control Center — choose System—Control Center (YaST) from the main menu. Click Network Services in the left side of the window, and then click Mail Transfer Agent in the right side of the window. YaST displays a window that you can use to configure sendmail. First you specify the general settings, then the settings for outgoing mail, and finally the settings for incoming mail. After you exit the mail configuration utility, YaST stores the mail settings in the files /etc/sysconfig/sendmail and /etc/sysconfig/mail and then runs SuSEconfig to update the sendmail configuration file (/etc/sendmail.cf). You can also generate the sendmail.cf file from a number of m4 macro files (text files in which each line eventually expands to multiple lines that mean something to some program). These macro files are organized into a number of subdirectories in the /usr/share/sendmail-cf directory in Fedora or the /usr/share/sendmail directory in SUSE. You can read the
README file in that directory to find out more about the creation of sendmail configuration files. Book IV Chapter 5 Managing Mail and News Servers #### The m4 macro processor The m4 macro processor generates the sendmail.cf configuration file, which comes with the sendmail package in Linux. The main macro file, named sendmail.mc, generic_linux.mc, or linux.mc, is included with the sendmail package. So what's a macro? A *macro* is basically a symbolic name for code that handles some action, usually in a shorthand form that substitutes for a long string of characters. A *macro processor* such as m4 usually reads its input file and copies it to the output, processing the macros along the way. The processing of a macro generally involves performing some action and generating some output. Because a macro generates a lot more text in the output than merely the macro's name, the processing of macros is referred to as *macro expansion*. The m4 macro processor is *stream-based*. That means it copies the input characters to the output while it's busy expanding any macros. The m4 macro processor does not have any concept of lines, so it copies newline characters (that mark the end of a line) to the output. That's why in most m4 macro files you see dn1, an m4 macro that stands for *delete through newline*. The dn1 macro deletes all characters starting at the dn1 up to and including the next newline character. The newline characters in the output don't cause any harm; they merely create unnecessary blank lines. The sendmail macro package uses dn1 to avoid such blank lines in the output configuration file. Because dn1 basically means delete everything up to the end of the line, m4 macro files also use dn1 as the prefix for comment lines. To see a simple use of m4, consider the following m4 macro file, which defines two macros — hello and bye — and uses them in a form letter: Type this text (using your favorite text editor) and save it in a file named ex.m4. You can name a macro file anything you like, but using the .m4 extension for m4 macro files is customary. Before you process the macro file by using m4, note the following key points about the example: ◆ Use the dn1 macro to start all the comment lines, as in the first four lines in the example. - ◆ End each macro definition with the dnl macro. Otherwise, when m4 processes the macro file, it produces a blank line for each macro definition. - ◆ Use the built-in m4 command define to define a new macro. The macro name and the value are both enclosed between a pair of left and right single quotes (' '). Note that you cannot use the plain single quote to enclose the macro name and definition. Now process the macro file ex.m4 by typing the following command: ``` m4 ex.m4 ``` m4 processes the macros and displays the following output: ``` Dear Sir/Madam, This is to inform you that we received your recent inquiry. We will respond to your question soon. Sincerely, Customer Service ``` Sounds just like a typical customer service form letter, doesn't it? If you compare the output with the ex.m4 file, you see that m4 prints the form letter on standard output, expanding the macros hello and bye into their defined values. If you want to save the form letter in a file called letter, use the shell's output redirection feature, like this: ``` m4 ex.m4 > letter ``` What if you want to use the word *hello* or *bye* in the letter without expanding them? You can do so by enclosing these words in a pair of single quotes (' . . . '). You have to do so for other predefined m4 macros, such as define. To use *define* as a plain word, not as a macro to expand, type 'define'. ## The sendmail macro file The simple example in the preceding section gives you an idea of how m4 macros are defined and used to create configuration files such as the sendmail.cf file. You find many complex macros stored in files in the /usr/share/sendmail-cf directory in Fedora or the /usr/share/sendmail directory in SUSE. A top-level macro file (called sendmail.mc in Fedora and linux.mc in SUSE), described later in this section, brings in these macro files with the include macro (used to copy a file into the input stream). To avoid repeatedly mentioning different file and directory names for different distributions such as Fedora and SUSE, I use the file and directory names for Fedora in the following discussions. The general discussions apply to sendmail in all Linux distributions, but you have to replace the file and directory names with those for your specific distribution. By defining its own set of high-level macros in files located in the /usr/share/sendmail-cf directory, sendmail essentially creates its own macro language. The sendmail macro files use the .mc extension. The Book IV Chapter 5 > Managing Mail and News Servers primary sendmail macro file you configure is sendmail.mc, located in the /etc/mail directory. Compared to the /etc/mail/sendmail.cf file, the /etc/mail/sendmail. mc file is shorter and easier to work with. Here are some lines from the /etc/mail/sendmail.mc file that comes with Fedora: ``` divert(-1)dnl dnl # This is the sendmail macro config file for m4. If you make changes dnl # /etc/mail/sendmail.mc, you will need to regenerate the dnl # /etc/mail/sendmail.cf file by confirming that the sendmail-cf package is dnl # installed and then performing a dnl # dnl # /etc/mail/make dnl # include('/usr/share/sendmail-cf/m4/cf.m4')dnl VERSIONID('setup for linux')dnl OSTYPE('linux')dnl dnl # dnl # Do not advertise sendmail version. dnl define('confSMTP LOGIN MSG', '$j Sendmail; $b')dnl dnl # default logging level is 9, you might want to set it higher to dnl # debug the configuration dnl # dnl define('confLOG LEVEL', '9')dnl dnl # dnl # Uncomment and edit the following line if your outgoing mail needs to dnl # be sent out through an external mail server: dnl define('SMART HOST', 'smtp.your.provider')dn . . . lines deleted . . . dnl # dnl MASQUERADE AS('mydomain.com')dnl dnl # masquerade not just the headers, but the envelope as well dnl # dnl FEATURE(masquerade_envelope)dnl dnl # dnl # masquerade not just @mydomainalias.com, but @*.mydomainalias.com as well dnl FEATURE (masquerade entire domain) dnl dnl # dnl MASQUERADE DOMAIN(localhost)dnl dnl MASQUERADE DOMAIN(localhost.localdomain)dnl dnl MASQUERADE DOMAIN (mydomainalias.com) dnl dnl MASQUERADE DOMAIN(mydomain.lan)dnl MAILER (smtp) dnl MAILER (procmail) dnl dnl MAILER(cyrusv2)dnl ``` If you make changes to the /etc/mail/sendmail.mc file, you must generate the /etc/mail/sendmail.cf file by running the sendmail.mc file through the m4 macro processor with the following command. (You have to log in as root.) The comments also tell you that you need the sendmail-cf package to process this file. From the previous section's description of m4 macros, you can see that the sendmail.mc file uses define to create new macros. You can also see the liberal use of dnl to avoid inserting too many blank lines into the output. The other uppercase words (such as OSTYPE, FEATURE, and MAILER) are sendmail macros. These are defined in the .m4 files located in the subdirectories of the /usr/share/sendmail-cf directory and are incorporated into the sendmail.mc file with the following include macro: include('usr/share/sendmail-cf/m4/cf.m4')dnl The /usr/share/sendmail-cf/m4/cf.m4 file, in turn, includes the cfhead.m4 file, which includes other m4 files, and so on. The net effect is as follows: As the m4 macro processor processes the sendmail.mc file, the macro processor incorporates many m4 files from various subdirectories of /usr/share/sendmail-cf. Here are some key points to note about the /etc/mail/sendmail.mc file: - ♦ VERSIONID('setup for linux') macro inserts the version information enclosed in quotes into the output. - ◆ OSTYPE('linux') specifies Linux as the operating system. You have to specify this macro early to ensure proper configuration. Placing this macro right after the VERSIONID macro is customary. - ♦ MAILER(smtp) describes the mailer. According to instructions in the /usr/share/sendmail-cf/README file, MAILER declarations are always placed at the end of the sendmail.mc file and MAILER(smtp) always precedes MAILER(procmail). The mailer smtp refers to the SMTP mailer. - ◆ FEATURE macros request various special features. For example, FEATURE ('blacklist_recipients') turns on the capability to block incoming mail for certain usernames, hosts, or addresses. The specification for what mail to allow or refuse is placed in the access database (stored in /etc/mail/access.db file). You also need the FEATURE ('access db') macro to turn on the access database. - ★ MASQUERADE_AS('mydomain.com') causes sendmail to label outgoing mail as having come from the host mydomain.com (replace mydomain with your domain name). The idea is for a large organization to set up a single sendmail server that handles the mail for many subdomains and makes everything appear to come from a single domain. (For example, mail from many departments in a university appears to come from the university's main domain name.) Book IV Chapter 5 > Managing Mail and News Servers ◆ MASQUERADE_DOMAIN(subdomain.mydomain.com) instructs sendmail to send mail from an address such as user@subdomain. mydomain.com as having originated from the same username at the domain specified by the MASQUERADE AS macro. The sendmail macros such as FEATURE and MAILER are described in the /usr/share/sendmail-cf/README file. Consult that file to find out more about the sendmail macros before you make changes to the sendmail.mc file. ## Syntax of the sendmail.cf file The sendmail.cf file's syntax is designed to be easy for the sendmail program to parse because sendmail reads this file whenever it starts. Human readability was not a primary consideration when the file's syntax was designed. Still, with a little explanation, you can understand the meaning of the control lines in sendmail.cf. Each sendmail control line
begins with a single-letter operator that defines the meaning of the rest of the line. A line that begins with a space or a tab is considered a continuation of the previous line. Blank lines and lines beginning with a pound sign (#) are comments. Often, no space appears between the single-letter operator and the arguments that follow the operator, which makes the lines even harder to understand. For example, sendmail.cf uses the concept of a class — essentially a collection of phrases. You can define a class named P and add the phrase REDIRECT to that class with the following control line: CPREDIRECT Because everything runs together, the command is hard to decipher. On the other hand, to define a class named Accept and set it to the values OK and RELAY, write the following: C{Accept}OK RELAY This command may be slightly easier to understand because the delimiters (such as the class name, Accept) are enclosed in curly braces. Other, more recent control lines are even easier to understand. For example, the line O HelpFile=/etc/mail/helpfile defines the option HelpFile as the filename /etc/mail/helpfile. That file contains help information that sendmail uses when it receives a HELP command. Table 5-1 summarizes the one-letter control operators used in sendmail. cf. Each entry also shows an example of that operator. This table helps you understand some of the lines in sendmail.cf. | Table 5-1 | Control Operators Used in sendmail.cf | |-----------|--| | Operator | Description | | С | Defines a class, a variable (think of it as a set) that can contain several values. For example, Cwlocalhost adds the name localhost to the class w. | | D | Defines a macro, a name associated with a single value. For example, ${\tt DnMAILER-DAEMON}$ defines the macro ${\tt n}$ as MAILER-DAEMON. | | F | Defines a class that's been read from a file. For example, $Fw/etc/mail/local-host-names$ reads the names of hosts from the file $/etc/mail/local-host-names$ and adds them to the class w . | | Н | Defines the format of header lines that sendmail inserts into a message. For example, H?P?Return-Path: <\$g> defines the Return-Path: field of the header. | | K | Defines a map (a key-value pair database). For example, Karith arith defines the map named arith as the compiled-in map of the same name. | | М | Specifies a mailer. The following lines define the procmail mailer: Mprocmail, P=/usr/bin/procmail, F=DFMSPh nu9, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP/HdrFromSMTP, T=DNS/RFC822/X-Unix, A=procmail-Y -m \$h \$f \$u. | | 0 | Assigns a value to an option. For example, O AliasFile=/etc/aliases defines the AliasFile option to /etc/aliases, which is the name of the sendmail alias file. | | Р | Defines values for the precedence field. For example, Pjunk=-100 sets to -100 the precedence of messages marked with the header field Precedence: junk. | | R | Defines a rule. (A rule has a left side and a right side; if input matches the left side, the right side replaces it. This rule is called rewriting.) For example, the rewriting rule R*$; $$1$ strips trailing semicolons. | | S | Labels a ruleset you can start defining with subsequent $\mathbb R$ control lines. For example, $\operatorname{Scanonify=3}$ labels the next ruleset as $\operatorname{canonify}$ and ruleset 3. | | Т | Adds a username to the trusted class (class t). For example, Troot adds root to the class of trusted users. | | V | Defines the major version number of the configuration file. | Book IV Chapter 5 Managing Mail and News Servers ## Other sendmail files The /etc/mail directory contains other files that sendmail uses. These files are referenced in the sendmail configuration file, /etc/mail/sendmail. cf in Fedora and /etc/sendmail.cf in SUSE. For example, here's how you can search for the /etc/mail string in the /etc/mail/sendmail.cf file in Fedora: ``` grep "\/etc\/mail" /etc/mail/sendmail.cf ``` Here's what the grep command displays as a result of the search on a typical Fedora system: ``` Fw/etc/mail/local-host-names FR-o /etc/mail/relay-domains Kmailertable hash -o /etc/mail/mailertable.db Kvirtuser hash -o /etc/mail/virtusertable.db Kaccess hash -T<TMPF> -o /etc/mail/access.db #O ErrorHeader=/etc/mail/error-header O HelpFile=/etc/mail/helpfile O UserDatabaseSpec=/etc/mail/userdb.db #O ServiceSwitchFile=/etc/mail/service.switch #O DefaultAuthInfo=/etc/mail/default-auth-info Ft/etc/mail/trusted-users ``` You can ignore the lines that begin with a hash mark, or number sign (#) because sendmail treats those lines as comments. The other lines are sendmail control lines that refer to other files in the /etc/mail directory. Here's what some of these sendmail files are supposed to contain. (Note that not all of these files have to be present in your /etc/mail directory, and even when present, some files may be empty.) - ♦ /etc/mail/access: Names or IP addresses or both of hosts allowed to send mail (useful in stopping spam — unwanted e-mail). - /etc/mail/access.db: Access database generated from the /etc/mail/access file. - ♦ /etc/mail/helpfile: Help information for SMTP commands. - ◆ /etc/mail/local-host-names: Names by which this host is known. - ♦ /etc/mail/mailertable: Mailer table used to override how mail is routed. (For example, the entry comcast.net smtp:smtp.comcast. net tells sendmail that mail addressed to comcast.net has to be sent to smtp.comcast.net.) - ♦ /etc/mail/relay-domains: Hosts that permit relaying. - ♦ /etc/mail/trusted-users: List of users allowed to send mail using other users' names without a warning. - ♦ /etc/mail/userdb.db: User database file containing information about each user's login name and real name. - ♦ /etc/mail/virtusertable: Database of users with virtual-domain addresses hosted on this system. The /etc/mail directory sometimes contains other files — /etc/mail/certs and the files with the .pem extension — that are meant for supporting Privacy Enhanced Mail (PEM) in sendmail by using the STARTTLS extension to SMTP. The STARTTLS extension uses TLS (more commonly known as SSL — Secure Sockets Layer) to authenticate the sender and encrypt mail. RFC 2487 describes STARTTLS. (This RFC is available online at http://ietf.org/rfc/rfc2487.txt.) If you edit the /etc/mail/mailertable file, you have to type the following command before the changes take effect: makemap hash /etc/mail/mailertable < /etc/mail/mailertable</pre> Here is an easier way to make sure that you rebuild everything necessary after making any changes — just type the following commands while logged in as root: cd /etc/mail make The first command changes the current directory to /etc/mail, and the second command runs the make command, which reads a file named Make file in /etc/mail to perform the steps necessary to rebuild everything. (To find out more about make and Makefile, see Book VII, Chapter 3.) ## The .forward file Users can redirect their own mail by placing a .forward file in their home directory. The .forward file is a plain-text file with a comma-separated list of mail addresses. Any mail sent to the user is instead forwarded to these addresses. If the .forward file contains a single address, all e-mail for that user is redirected to that single e-mail address. For example, suppose a .forward file containing the following line is placed in the home directory of a user named emily: ashley This line causes sendmail to automatically send all e-mail addressed to emily to the username ashley on the same system. User emily does not receive mail at all. Book IV Chapter 5 > Managing Mail an News Servers You can also forward mail to a username on another system by listing a complete e-mail address. For example, you can add a .forward file with the following line to send messages addressed to username wilbur to the mail address wilbur@somewhereelse.net: wilbur@somewhereelse.net To keep a copy of the message on the original system, in addition to forwarding to the preceding specified address, add the following line to the .forward file: wilbur@somewhereelse.net, wilbur\ Simply append the username and end the line with a backslash (\). The backslash at the end of the line stops sendmail from repeatedly forwarding the message. ## The sendmail alias file In addition to the sendmail.cf file, sendmail also consults an alias file named /etc/aliases to convert a name into an address. The location of the alias file appears in the sendmail configuration file. Each *alias* is typically a shorter name for an e-mail address. The system administrator uses the sendmail alias file to forward mail, to create a mailing list (a single alias that identifies several users), or to refer to a user by several different names. For example, here are some typical aliases: ``` brown: glbrown all: jessica, isaac, alex, caleb, glbrown ``` After defining any new aliases in the /etc/aliases file, you must log in as root and make the new alias active by typing the following command: sendmail -bi # Installing the INN Server This section describes how to configure InterNetNews (INN), a TCP/IP-based news server. First you have to install INN. In Debian, Ubuntu, and Xandros, type **dpkg -l inn*** to see whether inn is installed. In Fedora and SUSE, type **rpm -q inn** and see whether the inn package is installed. In Debian and Ubuntu, type **apt-get install inn** to install the INN server. In Fedora, log in as root, mount the DVD, and type **cd /media/cdrom/Fedora/RPMS** followed by **rpm -ivh inn***. In SUSE, click Software Management in the YaST Control Center's Software category. Then use YaST's search feature to look for inn, select the relevant packages from the search results, and install them. In Xandros, first run Xandros Networks, choose Edit Set Application Sources, and click the Debian
Unsupported Site link as a source. Then type apt-get install inn to install the INN server. # Configuring and Starting the INN Server Much of the INN (InterNetNews) software is ready to go as soon as you install it. All you need to do is to brush up a bit on the various components of INN, edit the configuration files, and start <code>innd</code> — the INN server. The INN server is sometimes referred to as the *news server*. If you want to run a news server that supports a selection of Internet newsgroups, you also have to arrange for a *news feed* — the source from which your news server gets the newsgroup articles. Typically, you can get a news feed from an ISP, but the ISP charges an additional monthly fee to cover the cost of resources required to provide the feed. (Your normal ISP charges cover reading news from the ISP's server; you have to pay additional charges only if you want to run your own server and get a news feed.) You need the name of the upstream server that provides the news feed, and you have to provide that server with your server's name and the newsgroups you want to receive. By the way, you don't need an external news feed if you're running a news server to support local newsgroups that are available only within your organization's network. How to set up local newsgroups is described in the "Setting Up Local Newsgroups" section of this chapter. Depending on the newsgroups you want to receive and the number of days you want to retain articles, you have to set aside appropriate disk space to hold the articles. The newsgroups are stored in a directory hierarchy (based on the newsgroup names) in the /var/spool/news directory of your system. If you're setting up a news server, you may want to devote a large disk partition to the /var/spool/news directory. In your news server's configuration files, enter the name of the server providing the news feed. At the same time, add to the configuration files the names of any downstream news servers (if any) that receive news feeds from your server. Then you can start the news server and wait for news to arrive. Monitor the log files to ensure that the news articles sort and store properly in the /var/spool/news directory on your system. The following sections introduce you to INN setup, but you can find out more about INN from the Internet Systems Consortium (ISC), a nonprofit corporation dedicated to developing and maintaining open source Internet software, such as BIND (an implementation of Domain Name System), DHCP (Dynamic Host Configuration Protocol), and INN. Rich Salz originally wrote INN; ISC took over the development of INN in 1996. You can find out more about INN and can access other resources at ISC's INN web page at .www.isc.org/downloads (click on the Other Software link). Book IV Chapter 5 > Managing Mail and News Servers # InterNetNews components INN includes several programs that deliver and manage newsgroups. It also includes a number of files that control how the INN programs work. The most important INN programs are the following: - ♦ innd: Accepts connections from other feed sites, as well as from local newsreader clients, but it hands off local connections to the nnrpd. The news server innd runs as a daemon (a background process that keeps itself running to provide a specific service) and listens on the NNTP port (TCP port 119). - ◆ nnrpd: Handles requests from local newsreader clients. nnrpd is a special server invoked by innd. - ◆ expire: Removes old articles based on the specifications in the text file /etc/news/expire.ctl. - ♦ nntpsend: Invokes the innxmit program to send news articles to a remote site by using NNTP. The configuration file /etc/news/ nntpsend.ctl controls the nntpsend program. - ◆ ctlinnd: Enables you to control the innd server interactively. The ctl innd program can send messages to the control channel of the innd server. The other vital components of INN are the control files. Most of these files are in the /etc/news directory of your Linux system, although a few are in the /var/lib/news directory. Between those two directories, you have more than 30 INN control files. Some important files include the following: - ♦ /etc/news/inn.conf: Specifies configuration data for the innd server. (To view online help for this file, type **man inn.conf**.) - ♦ /etc/news/newsfeeds: Specifies what articles to feed downstream to other news servers. (The file is complicated, but you can get help by typing man newsfeeds.) - ♦ /etc/news/incoming.conf: Lists the names and addresses of hosts that provide news feeds to this server. (To view online help for this file, type man incoming.conf.) - ♦ /etc/news/storage.conf: Specifies the storage methods to be used when storing news articles. (To view online help for this file, type man storage.conf.) - ♦ /etc/news/expire.ctl: Controls expiration of articles, on a pernewsgroup level, if desired. (To view online help for this file, type man expire.ctl.) - ♦ /var/lib/news/active: Lists all active newsgroups, showing the oldest and newest article number for each, and each newsgroup's posting status. (To view online help for this file, type **man active**.) - /var/lib/news/newsgroups: Lists newsgroups and a brief description of each. - /etc/news/readers.conf: Specifies hosts and users who are permitted to read news from this news server and post news to newsgroups. The default file allows only the localhost to read news; you have to edit it if you want to allow other hosts in your local area network to read news. (To view online help for this file, type man readers.conf.) The next few sections describe how to set up some of the important control files. #### The inn.conf file The inn.conf file holds configuration data for all INN programs — which makes it the most important file. Each line of the file has the value of a parameter in the following format: parameter: value Depending on the *parameter*, the *value* is a string, a number, or true or false. As in many other configuration files, comment lines begin with a pound sign (#). Most of the parameters in the default inn.conf file in the /etc/news directory do not require changes. You may want to edit one or more of the parameters shown in Table 5-2. | Table 5-2 | Configuration Parameters in /etc/news/inn.conf | |----------------|---| | Parameter Name | Set This To | | mta | The command used to start the mail transfer agent that is used by innd to transfer messages. The default is to use sendmail. | | organization | The name of your organization in the way you want it to appear in the Organization: header of all news articles posted from your system. Users may override this parameter by defining the ORGANIZATION environment variable. | | ovmethod | The type of overview storage method. (The <i>overview</i> is an index of news articles in the newsgroup.) The default method is tradindexed, which is fast for reading news but slow for storing news items. | | pathhost | The name of your news server as you want it to appear in the Path header of all postings that go through your server. If pathhost isn't defined, the fully qualified domain name of your system is used. | Book IV Chapter 5 Managing Mail and News Servers | Table 5-2 <i>(continued)</i> | | | | |------------------------------|---|--|--| | Parameter Name | Set This To | | | | pathnews | The full pathname of the directory that contains INN binaries and libraries. The default pathnews is set to /usr/lib/news. | | | | domain | The domain name for your server. | | | | allownewnews | True if you want INN to support the NEWNEWS command from newsreaders. In the past, this option was set to false because the NEWNEWS command used to reduce the server's performance, but now the default is set to true because modern servers can easily handle the NEWNEWS command. | | | | hiscachesize | The size in kilobytes that you want INN to use for caching recently received message IDs that are kept in memory to speed history lookups. This cache is used only for incoming feeds, and a small cache can hold quite a few history file entries. The default setting of 0 disables history caching. If you have more than one incoming feed, you may want to set this parameter to a value of 256 (for 256KB). | | | | innflags | Any flags you want to pass to the INN server process when it starts. | | | #### The newsfeeds file The newsfeeds file (found at /etc/news/newsfeeds) specifies how incoming news articles are redistributed to other servers and to INN processes. If you provide news feeds to other servers, you have to list these news feeds in this file. (You also must have an entry labeled ME, which serves a special purpose explained later in this section.) The newsfeeds file contains a series of entries, one for each feed. Each feed entry has the following format: ``` site[/exclude,exclude . . .] \ :pattern, pattern . . . [/distrib, distrib . . .] \ :flag,flag . . .\ :param ``` Each entry has four fields separated by a colon (:). Usually the entries span multiple lines, and a backslash (\) at the end of the line continues a line to the next. Here's what the four fields mean: ◆ The first field, site, is the name of the feed. Each name must be unique, and for feeds to other news servers, the name is set to the hostname of the remote server. Following the name is an optional slash and an exclude list (/exclude,
exclude . . .) of names. If any of the names in this list appear in the Path line of an article, that article isn't forwarded to the feed. You can use an exclude list if you don't want to receive articles from a specific source. - ★ The second field is a comma-separated list of newsgroup patterns, such as *,@alt.binaries.warez.*,!control*,!local*, followed by an optional distribution list. The distribution list is a list of comma-separated keywords, with each keyword specifying a specific set of sites to which the articles are distributed. The newsgroup patterns essentially define a subscription list of sites that receive this news feed. An asterisk (*) matches all newsgroups. A pattern beginning with @ causes newsgroups matching that pattern to be dropped. A pattern that begins with an exclamation mark (!) means the matching newsgroups are not sent. The simple pattern-matching syntax used in INN configuration files is referred to as a wildmat pattern. - ◆ The third field is a comma-separated list of flags fields that determine the feed-entry type and set certain parameters for the entry. You see numerous flags; type man newsfeeds and read the man page for more information about the flags. - ◆ The fourth field is for parameters whose values depend on the settings in the third field. Typically this field contains names of files or external programs that the INN server uses. You can find more about this field from the newsfeeds man page. Now that you know the layout of the /etc/news/newsfeeds file, you can study that file as an example. The default file contains many sample feed entries, but only two are commented out: - ◆ ME is a special feed entry that's always required. It serves two purposes. First, the newsgroup patterns listed in this entry are used as a prefix for all newsgroup patterns in all other entries. Second, the ME entry's distribution list determines what distributions your server accepts from remote sites. - ♦ The controlchan feed entry is used to set up INN so that an external program is used to handle control messages. (These messages are used to create new newsgroups and remove groups.) For example, the following controlchan entry specifies the external program /usr/lib/news/bin/controlchan to handle all control messages, except cancel messages (meant for canceling an article): ``` controlchan!\ :!*,control,control.*,!control.cancel\ :Tc,Wnsm:/usr/lib/news/bin/controlchan ``` In addition to these feed entries, you add entries for any actual sites to which your news server provides news feeds. Such entries have the format feedme.domain.com\ :!junk,!control/!foo\ :Tm:innfeed! Book IV Chapter 5 > Managing Mail and News Servers where feedme.domain.com is the fully qualified domain name of the site to which your system sends news articles. # The incoming.conf file The incoming.conf file describes which hosts are allowed to connect to your host to feed articles. For a single feed, you can add an entry like ``` peer mybuddy { hostname: a-feed-site.domain.com } ``` where mybuddy is a label for the peer and a-feed-site.domain.com identifies the site that feeds your site. Keep in mind that simply adding a site's name in the incoming.conf file does not cause that remote site to start feeding news to your site; it simply enables your server to accept news articles from the remote site. At the remote site, your buddy has to configure his or her server to send articles to your site. # The readers.conf file The readers.conf file specifies the hostnames or IP addresses from which newsreader clients (such as Mozilla) can retrieve newsgroups from your server. For example, the following readers.conf file allows *read access* and *post access* (meaning you can submit articles) from localhost and from any host in the network 192.168.0.0: ``` auth "localhost" { hosts: "localhost, 127.0.0.1, stdin" default: "<localhost>" } access "localhost" { users: "<localhost>" newsgroups: "*" access: RPA } auth "localnet" { hosts: 192.168.0.0/24 default: "<localnet>" } access "localnet" { users: "<localnet>" newsgroups: "*" access "localnet>" hosts: "<localnet>" } ``` # InterNetNews startup In addition to the configuration files, you also have to initiate cron jobs that perform periodic maintenance of the news server. In Fedora, these cron jobs are already set up. Therefore, you're now ready to start the INN server — innd. Before you start innd, you must run makehistory and makedbz to initialize and rebuild the INN history database. Type **man makehistory** and **man makedbz** to find out more about these commands. To create an initial history database, associated indexes, and set the ownerships and permissions of some files, type the following commands: ``` /usr/lib/news/bin/makehistory -b -f history -0 -l 30000 -I cd /var/lib/news /usr/lib/news/bin/makedbz -s 'wc -l < history' -f history chown news.news * chown news.news /var/spool/news/overview/group.index chmod 664 /var/spool/news/overview/group.index ``` To start innd in Fedora, log in as root and type /etc/init.d/innd start. (Alternatively, you can type service innd start.) In Debian, SUSE, Ubuntu, and Xandros, type /etc/init.d/inn start. To ensure that innd starts at boot time, type chkconfig -level 35 innd on in Fedora and chkconfig -level 35 inn on in SUSE. In Debian and Xandros, type update-rc.d inn defaults. If you make any changes to the INN configuration files, remember to restart the server by invoking the /etc/init.d script with restart as the argument. # Setting Up Local Newsgroups If you want to use newsgroups as a way to share information within your company, you can set up a hierarchy of local newsgroups. Then you can use these newsgroups to create virtual communities within your company, where people with shared interests can informally discuss issues and exchange knowledge. # Defining a newsgroup hierarchy The first task is to define a hierarchy of newsgroups, deciding what each newsgroup discusses. For example, if your company name is XYZ Corporation, here's a partial hierarchy of newsgroups you might define: - ★ xyz.general: General items about XYZ Corporation - ♦ xyz.weekly.news: Weekly news - xyz.weekly.menu: The weekly cafeteria menu and any discussions about it - ★ xyz.forsale: A listing of items offered for sale by employees - ◆ xyz.jobs: Job openings at XYZ Corporation - xyz.wanted: Wanted (help, items to buy, and so on) postings by employees Book IV Chapter 5 Managing Mail and News Servers - ♦ xyz.technical.hardware: Technical discussions about hardware - ◆ xyz.technical.software: Technical discussions about software # Updating configuration files Following are the steps you follow to update the configuration files for your local newsgroups and restart the news server: 1. Add descriptive entries for each newsgroup to the /var/lib/news/ newsgroups file. Add to this file a line for each local newsgroup — type its name followed by a brief description. For example, here's what you might add for the xyz.qeneral newsgroup: ``` xyz.general General items about XYZ Corporation ``` 2. Edit the ME entry in the /etc/news/newsfeeds file and add the phrase ,!xyz.* to the comma-separated list of newsgroup patterns. This step ensures that your local newsgroups are not distributed outside your site. 3. Add a storage method to use for the local newsgroups. For example, you can add the following lines in /etc/news/storage. conf to define the storage method for the new xyz hierarchy of newsgroups (change xyz to whatever you name your local newsgroups): ``` method tradspool { class: 1 newsgroups: xyz.* ``` 4. To make these changes effective, restart the news server. Type service innd restart in Fedora or /etc/init.d/inn restart in Debian, SUSE, Ubuntu, and Xandros.) # Adding the newsgroups The final step is to add the newsgroups. After you update the configuration files and run innd, adding a local newsgroup is easy. Log in as root and use ctlinnd to perform this task. For example, here's how you add a newsgroup named xyz.general: ``` /usr/lib/news/bin/ctlinnd newsgroup xyz.general ``` That's it! That command adds the xyz.general newsgroup to your site. If you use the traditional storage method, the innd server creates the directory /var/spool/news/articles/xyz/general the first time an article is posted and stores articles for that newsgroup in that directory. After you create all the local newsgroups, users from your intranet can post news articles and read articles in the local newsgroups. If they have problems accessing the newsgroups, make sure that the /etc/news/readers. conf file contains the IP addresses or names of the hosts that have access to the innd server. #### Testing your newsgroups For example, add a newsgroup named <code>local.news</code> on an INN server running on your Linux system by using the instructions explained in the previous sections. Then start a newsreader and set up a new news account with the news server set to the INN server. Then access the <code>local.news</code> newsgroup. Try it! You'll like it Book IV Chapter 5 lanaging Mail and News Servers # Chapter 6: Managing DNS #### In This Chapter - **✓** Understanding DNS - Exploring BIND - ✓ Finding out how to configure DNS - Setting up a caching name server - ✓ Configuring a primary name server omain Name System (DNS) is an Internet service that converts a fully qualified domain name, such as www.debian.org, into its corresponding IP address, such as 194.109.137.218. You can think of DNS as the directory of Internet hosts — DNS is the reason why you can use easy-to-remember hostnames even though TCP/IP requires numeric IP addresses for data transfers. DNS is basically a hierarchy of distributed DNS servers. This chapter provides an overview of DNS and shows you how to set up a caching DNS server on your Linux system. # Understanding Domain Name System (DNS) In TCP/IP networks, each network interface (for example, an Ethernet card or a dial-up modem connection) is identified by an IP
address. Because IP addresses are hard to remember, an easy-to-remember name is assigned to the IP address — much like the way a name goes with a telephone number. For example, instead of having to remember that the IP address of Debian's web server is 194.109.137.218, you can simply refer to that host by its name, www.debian.org. When you type www.debian.org as the URL in a web browser, the name www.debian.org is translated into its corresponding IP address. This process is where the concept of DNS comes in. #### What is DNS? Domain Name System is a distributed, hierarchical database that holds information about computers on the Internet. That information includes hostname, IP address, and mail-routing specifications. Because this information resides on many DNS hosts on the Internet, DNS is called a *distributed* database. The primary job of DNS is to associate hostnames to IP addresses and vice versa. In ARPANET — the precursor to today's Internet — the list of hostnames and corresponding IP addresses was maintained in a text file named <code>HOSTS.TXT</code>, which was managed centrally and periodically distributed to every host on the network. As the number of hosts grew, this static host table quickly became unreasonable to maintain. DNS was proposed by Paul Mockapetris to alleviate the problems of a static host table. As formally documented in Requests for Comment (RFCs) 882 and 883 (published in November 1983; see www.faqs.org/rfcs/rfc882.html and www.faqs.org/rfcs/rfc883.html), the original DNS introduced two key concepts: - ◆ The use of hierarchical domain names, such as www.ee.umd.edu and www.debian.org - ◆ The use of DNS servers throughout the Internet a form of distributed responsibility as a means of managing the host database Today, DNS is an Internet standard documented that has been updated and extended. Earlier updates defined data encoding, whereas later ones focus on improving DNS security. To read these and other RFCs online, visit the RFC page at the Internet Engineering Task Force (IETF) website at www.ietf.org/rfc.html. #### DNS defines the following: - ♦ A hierarchical domain-naming system for hosts - A distributed database that associates every domain name with an IP address - Library routines (resolvers) that network applications can use to query the distributed DNS database (this library is called the resolver library) - A protocol for DNS clients and servers to exchange information about names and IP addresses Nowadays, all hosts on the Internet rely on DNS to access various Internet services on remote hosts. As you may know from experience, when you obtain Internet access from an Internet Service Provider (ISP), your ISP provides you with the IP addresses of *name servers* — the DNS servers your system accesses whenever hostnames are mapped to IP addresses. If you have a small LAN, you may decide to run a DNS server on one of the hosts or use the name servers provided by the ISP. For medium-sized networks with several subnets, you can run a DNS server on each subnet to provide efficient DNS lookups. On a large corporate network, the corporate domain (such as www.microsoft.com) is further subdivided into a hierarchy of subdomains; several DNS servers may be used in each subdomain. The following sections provide an overview of the hierarchical domain-naming convention and describe BIND — the DNS software used on most Unix systems, including Linux. # Discovering hierarchical domain names DNS uses a hierarchical tree of domains to organize the *namespace* — the entire set of names. Each higher-level domain has authority over its lower-level subdomains. Each domain represents a distinct block of the namespace and is managed by a single administrative authority. Figure 6-1 illustrates the hierarchical organization of the DNS namespace. Figure 6-1: The DNS namespace is organized as a hierarchy. The root of the tree is called the *root domain* and is represented by a single dot (.). The top-level, or root-level, domains come next. The top-level domains are further divided into second-level domains, which, in turn, can be broken into further subdomains. The top-level domains are relatively fixed and include well-known domains such as COM, NET, ORG, EDU, GOV, and MIL. These are the commonly used top-level domains in the United States. These top-level domains came about as the Internet came to widespread use in the early 1990s. Another set of top-level domain names is for the countries. These domain names use the two-letter country codes assigned by the International Organization for Standardization (abbreviated as ISO, see www.iso.org). For example, the top-level country code domain for the United States is US. In the United States, many local governments and organizations use the US domain. For example, mcps.k12.md.us is the domain name of the Montgomery County Public Schools in the state of Maryland, in the United States. To this list, you can add other generic top-level domain names that have been added since the original set. These include ${\tt BIZ}$ (for business), .NAME (for family names), .MUSEUM, .TRAVEL, and others (with more proposed on the way). The fully qualified domain name (FQDN) is constructed by stringing together the subdomain names, from lower-level to higher-level, using a period (.) as a separator. For example, REDHAT . COM is a fully qualified domain name; so is EE . UMD . EDU. Note that each of these may also refer to a specific host computer. Figure 6-2 illustrates the components of a fully qualified domain name. Book IV Chapter 6 **Managing DNS** Figure 6-2: A fully qualified domain name has a hierarchy of components. Domain names are case-insensitive. Therefore, as far as DNS is concerned, the domains UMD. EDU and umd. edu both represent University of Maryland's domain. The norm, however, is to type domain names in all lowercase. #### Exploring Berkeley Internet Name Domain (BIND) Most Unix systems, including Linux, come with the BIND system — a well-known implementation of DNS. The BIND software is installed during the Linux installation as long as you select the name server when selecting the packages for installation. In Debian, Ubuntu, and Xandros, type **dpkg -I bind*** to see if BIND is installed. In Fedora and SUSE, type **rpm -q bind** and see if the BIND package is installed. In Debian and Ubuntu, type **apt-get install bind9** to install BIND. In Fedora, log in as root, mount the DVD, and type **cd /media/cdrom/Fedora/RPMS** followed by **rpm -ivh bind***. In SUSE, click Software Management in the YaST Control Center's Software category. Then use YaST's search facility to look for *bind*, select the relevant packages, and install them. In Xandros, first run Xandros Networks, choose Editc>Set Application Sources, and click the Debian Unsupported Site link as a source. Then type **apt-get install bind9** to install the BIND server. BIND includes three major components: - ◆ The named daemon (the name server), which responds to queries about hostnames and IP addresses - A resolver library that applications can use to resolve hostnames into IP addresses (and vice versa) - ◆ Command-line DNS utility programs (DNS clients), such as dig (Domain Internet Groper) and host, that users can use to query DNS The next few sections describe these components of BIND. Later sections explain how to configure the resolver and the name server. #### named — the BIND name server The named daemon is the name server that responds to queries about hostnames and IP addresses. Based on the configuration files and the local DNS database, named either provides answers to queries or asks other servers and caches their responses. The named server also performs a function referred to as *zone transfer*, which involves copying data among the name servers in a domain. The name server operates in one of three modes: - Primary, or master: In this case, the name server keeps the master copy of the domain's data on disk. One primary server is for each domain or subdomain. - ◆ Secondary, or slave: A secondary name server copies its domain's data from the primary server using a zone transfer operation. You can have one or more secondary name servers for a domain. - ◆ Caching: A caching name server loads the addresses of a few authoritative servers for the root domain and gets all domain data by caching responses to queries it has resolved by contacting other name servers. Primary and secondary servers also cache responses. A *name server* can be authoritative or not, depending on what information it's providing. As the term implies, the response from an authoritative name server is supposed to be accurate. The primary and secondary name servers are authoritative for their own domains, but they are not authoritative for responses provided from cached information. Caching name servers are never authoritative because all their responses come from cached information. To run a name server on your Linux system, you have to run named with the appropriate configuration files. Later in this chapter, you'll find out about the configuration files and data files that control how the name server operates. #### Resolver library Finding an IP address for a hostname is referred to as *resolving the hostname*. Network-aware applications, such as a web browser or an FTP client, use a *resolver library* to perform the conversion from the name to an IP address. Depending on the settings in the /etc/host.conf file, the resolver library consults the /etc/hosts file or makes a DNS query to resolve a hostname to its IP address. The resolver library queries the name servers listed in the /etc/resolv.conf file. You don't have to know much about the resolver library unless you're writing network-aware applications. To run Internet services properly, all you have to know is how to configure the resolver. Later in this chapter, you will see how to configure the server and other aspects of DNS. Book IV Chapter 6
Managing DN: #### DNS utility programs You can use the DNS utility programs — dig and host — to try out DNS interactively from the shell prompt. These utility programs are DNS clients. You can use them to query the DNS database and debug any name server set up on your system. By default, these programs query the name server listed in your system's /etc/resolv.conf file. You can use dig, the Domain Internet Groper program, to look up IP addresses for a domain name or vice versa. For example, to look up the IP address of ftp.redhat.com, type ``` dig ftp.redhat.com ``` dig prints the results of the DNS query in great detail. Look in the part of the output labeled ANSWER SECTION: for the result. For example, here's what that section looks like for this sample query: ``` ;; ANSWER SECTION: ftp.redhat.com. 300 IN A 209.132.183.61 ``` This output means that the name ftp.redhat.com refers to the IP address 209.132.183.61. Reverse lookups (finding hostnames for IP addresses) are also easy with dig. For example, to find the hostname corresponding to the IP address 209.132.183.61, type the following: ``` dig -x 209.132.183.61 ``` Again, the answer appears in the ANSWER SECTION of the output, which, for this example, looks like this: ``` ;; ANSWER SECTION: 61.132.183.209.in-addr.arpa. 600 IN PTR ftp.redhat.com. ``` In this case, the hostname corresponding to the IP address 209.132.183.61 is ftp.redhat.com. You can also query DNS by using the host program, which produces output in a compact format. For example, here's a typical use of host to look up an IP address for a hostname: ``` host www.gao.gov ``` This command generates the following output: ``` www.gao.gov has address 161.203.16.77 www.gao.gov mail is handled by 5 listserv.gao.gov. ``` By default, host prints the IP address and any *MX record*. These records list the names of mail handlers for the host. For a reverse lookup, use the -t ptr option along with the IP address as an argument, like this: ``` host -t ptr 161.203.16.2 ``` Here's the relay from host: ``` 2.16.203.161.in-addr.arpa domain name pointer www.qao.gov. ``` In this case, host prints the PTR record (from the DNS database) that shows the hostname corresponding to the IP address. (PTR refers to *pointer*, and the PTR record specifies the name corresponding to an address.) You can also try other types of records, such as CNAME (for canonical name), as follows: ``` host -t cname www.ee.umd.edu ``` The response from host is ``` www.ee.umd.edu is an alias for ajclark.eng.umd.edu. ``` This output indicates that the *canonical name* (or alias) for www.ee.umd.edu is ajclark.eng.umd.edu. # Configuring DNS You configure DNS by using a number of configuration files. The exact set of files depends on whether you're running a name server and, if so, the type of name server — caching or primary. Some configuration files are needed whether you run a name server or not. # Configuring the resolver You don't need a name server running on your system to use the DNS clients (dig and host). You can use them to query your domain's name server. Typically, your ISP provides you with this information. You have to list the IP addresses of these name servers in the /etc/resolv.conf file — the resolver library reads this file to determine how to resolve hostnames. The format of this file is ``` domain your-domain.com search your-domain.com nameserver A.B.C.D nameserver X.Y.Z.W ``` Book IV Chapter 6 Managing DN where A.B.C.D and X.Y.Z.W are the IP addresses (dot-separated numeric addresses, such as 192.168.0.1) of the primary and secondary name servers that your ISP provides you. The domain line lists the local domain name. The search line specifies the domains on which a hostname is searched first (usually, you put your own domain in the search line). The domain listed on the search line is appended to any hostname before the resolver library tries to resolve it. For example, if you look for a host named mailhost, the resolver library first tries mailhost. your-domain.com; if that fails, it tries mailhost. The search line applies to any hostname that you try to access. For example, if you're trying to access www.redhat.com, the resolver first tries www.redhat.com.your-domain.com and then www.redhat.com. Another important configuration file is /etc/host.conf. This file tells the resolver what to do when attempting to resolve a hostname. A typical /etc/host/conf file contains the following line: order hosts, bind This command tells the resolver to consult the /etc/hosts file first, and if the resolver does not find an entry there, query the name server listed in the /etc/resolv.conf file. The /etc/hosts file usually lists any local host-names and their IP addresses. Here's a typical line from the /etc/hosts file: 127.0.0.1 lnbp200 localhost.localdomain localhost This line says that the IP address 127.0.0.1 is assigned to the hostnames lnbp200, localhost.localdomain, and localhost. In the latest version of the Linux kernel — the one that uses GNU C Library version 2 (glibc 2) or later — the name service switch (NSS) file, /etc/nsswitch.conf, controls how services such as the resolver library, NIS, NIS+, and local files such as /etc/hosts and /etc/shadow interact. For example, the following hosts entry in the /etc/nsswitch.conf file specifies that the resolver library first try the /etc/hosts file, then try NIS+, and finally try DNS: hosts: files nisplus dns To find more about the /etc/nsswitch.conf file, type man nsswitch.conf in a terminal window. # Configuring a caching name server A *caching name server* is a simple-but-useful name server that finds answers to hostname queries (by using other name servers) and then remembers the answer (by saving it in a cache) for the next time you need it. This caching name server can shorten the time it takes to access hosts you have accessed recently because the answer is already in the cache. When you install BIND, the configuration files for a caching name server are installed as well, so you can start running the caching name server without much work. This section describes the configuration files and what you have to do to start the caching name server. #### The /etc/named.conf file The first configuration file you need is /etc/named.conf. (That's the name in Fedora and SUSE; in Debian, Ubuntu, and Xandros, the BIND configuration file is called /etc/bind/named.conf.) The named server reads this configuration file when it starts. You already have this file if you installed BIND. Here's an example /etc/named.conf file: ``` options { directory "/var/named"; dump-file "/var/named/data/cache dump.db"; statistics-file "/var/named/data/named stats.txt"; * If there is a firewall between you and nameservers you want * to talk to, you might need to uncomment the guery-source * directive below. Previous versions of BIND always asked * questions using port 53, but BIND 8.1 uses an unprivileged * port by default. // guery-source address * port 53; // a caching only nameserver config // inet 127.0.0.1 allow { localhost; } keys { rndckey; }; zone "." IN { type hint; file "named.ca"; zone "localdomain" IN { type master; file "localdomain.zone"; allow-update { none; }; }; zone "localhost" IN { type master; file "localhost.zone"; allow-update { none; }; zone "0.0.127.in-addr.arpa" IN { type master; file "named.local"; allow-update { none; }; }; type master; file "named.ip6.local"; ``` **Book IV** Chapter 6 ``` allow-update { none; }; }; zone "255.in-addr.arpa" IN { type master; file "named.broadcast"; allow-update { none; }; }; zone "0.in-addr.arpa" IN { type master; file "named.zero"; allow-update { none; }; }; include "/etc/rndc.key"; ``` Comments are C-style (/* . . . */) or C++-style (starts with //). The file contains block statements enclosed in curly braces ($\{$. . . $\}$) and terminated by a semicolon (;). A block statement, in turn, contains other statements, each ending with a semicolon. This /etc/named.conf file begins with an options block statement with a number of option statements. The directory option statement tells named where to look for all other files that appear on file lines in the configuration file. In this case, named looks for the files in the /var/named directory. In SUSE, the directory option in /etc/named.conf refers to the /var/lib/named directory, which means that all other BIND configuration files are in /var/lib/named. In Debian and Xandros, the configuration files are explicitly specified to be in the /etc/bind directory. The controls statement in /etc/named.conf contains security information so that the rndc command can connect to the named service at port 953 and interact with named. In this case, the controls statement contains the following line: ``` inet 127.0.0.1 allow { localhost; } keys { rndckey; }; ``` This command says that rndc can connect from localhost with the key named rndc. (The file /etc/rndc.key defines the key and the encryption algorithm to be used.) The rndc (remote name daemon control) utility is a successor to the older ndc (name daemon controller) utility used to control the named server by sending it messages over a special control channel, a TCP port where named listens for messages. The rndc utility uses a cryptographic key to authenticate itself to the named server. The named server has the same cryptographic key so that it can decode the authentication information sent by rndc. After the options statement, the /etc/named.conf file contains several zone statements, each enclosed in curly braces and terminated by a semicolon. Each zone statement defines a zone. The first zone is named. (root zone); it's a hint zone that specifies the root name servers. (When the DNS server starts, it uses the hint zone to find a root name server and get the most recent list of root name servers.) The next two zone statements in /etc/named.conf are master zones. (A *master zone* is simply the master copy of data for a domain.) The syntax for a *master
zone statement* for an Internet class zone (indicated by the IN keyword) is as follows: ``` zone "zone-name" IN { type master; file "zone-file"; [. . . other optional statements . . .] }; ``` zone-name is the name of the zone, and zone-file is the zone file that contains the resource records (RR) — the database entries — for that zone. The next two sections describe zone file formats and resource record formats. #### Zone file formats The zone file typically starts with a number of directives, each of which begins with a dollar sign (\$) followed by a keyword. Two commonly used directives are \$TTL and \$ORIGIN. For example, the line ``` $TTL 86400 ``` uses the \$TTL directive to set the default Time To Live (TTL) for subsequent records with undefined TTLs. The value is in seconds, and the valid TTLs are in the range 0 to 2147483647 seconds. In this case, the directive sets the default TTL as 86400 seconds (or one day). The \$ORIGIN directive sets the domain name that is appended to any unqualified records. For example, the following \$ORIGIN directive sets the domain name to local host: ``` SORIGIN localhost. ``` If there is no \$ORIGIN directive, the initial \$ORIGIN is the same as the zone name that comes after the zone keyword in the /etc/named.conf file. After the directives, the zone file contains one or more resource records. These records follow a specific format, which are outlined in the next section. #### Resource record (RR) formats You have to understand the format of the resource records before you can understand and intelligently work with zone files. Each resource record (RR) has the following format. (Optional fields are shown in square brackets.) Book IV Chapter 6 Managing DN [domain] [ttl] [class] type data [;comment] The fields are separated by tabs or spaces and may contain some special characters, such as an @ for the domain and a semicolon (;) to indicate the start of a comment. The first field, which must begin at the first character of the line, identifies the domain. You can use the @ to use the current \$ORIGIN for the domain name for this record. If you have multiple records for the same domain name, leave the first field blank. The optional tt1 field specifies the Time To Live — the duration for which the data can be cached and considered valid. You can specify the duration in one of the following formats: - \blacktriangleright N, where N is the number of seconds - ◆ NW, where N is the number of weeks - \bullet ND, where N is the number of days - ♦ NH, where N is the number of hours - \blacklozenge NM. where N is the number of minutes - \bullet NS, where N is the number of seconds The letters W, D, H, M, and S can also be lowercase. Thus you can write 86400 or 1D (or 1d) to indicate a duration of one day. You can also combine these letters to specify more precise durations, such as 5 w6d16h to indicate 5 weeks, 6 days, and 16 hours. The *class* field specifies the network type. The most commonly used value for this field is IN for Internet. Next in the resource record is the *type* field, which denotes the type of record (such as SOA, NS, A, or PTR). Table 6-1 lists the DNS resource record types. The *data* field comes next, and its content depends on the *type* field. | Table 6-1 | DNS Resource Record Types | | | |-----------|------------------------------------|---|--| | Туре | Name | Description | | | A | IPv4 to IPv6 Transition
Address | Specifies the IPv6 address corresponding to a name using a format suitable for transition from IPv4 to IPv6 | | | AAAA | IPv6 Address | Specifies the IPv6 host address corresponding to a name | | | AS | Address | Specifies the IP address corresponding to a hostname | | | Туре | Name | Description | |-------|---------------------|---| | CERT | Digital Certificate | Holds a digital certificate | | CNAME | Canonical Name | Defines the nickname or alias for a hostname | | DNAME | Delegation Name | Replaces specified domain name with another name to be looked up | | HINFO | Host Info | Identifies the hardware and operat-
ing system for a host | | KEY | Public Key | Stores a public key associated with a DNS name | | MX | Mail Exchanger | Identifies the host that accepts mail
meant for a domain (used to route
e-mail) | | NS | Name Server | Identifies authoritative name servers for a zone | | PTR | Pointer | Specifies the name corresponding to an address (used for <i>reverse mapping</i> — converting an IP address to a hostname) | | RP | Responsible Person | Provides the name of a technical contact for a domain | | SIG | Signature | Contains data authenticated in the secure DNS (see RFC 2535 for details) | | SOA | Start of Authority | Indicates that all subsequent records are authoritative for this zone | | SRV | Services | Lists well-known network services provided by the domain | | TXT | Text | Includes comments and other information in the DNS database | Read the resource records in the zone files, at least the ones of type SOA, NS, A, PTR, and MX, which are some of the most commonly used. (You'll find the zone files in the /etc/bind directory in Debian and Xandros, the /var/named directory in Fedora, and the /var/lib/named directory in SUSE.) Next there is a brief description of these records, illustrating each record type through an example. #### A typical SOA record follows: ``` @ 1D IN SOA @ root (42 ; serial ``` Book IV Chapter 6 Managing DN ``` 3H; refresh -- 3 hours 15M; retry -- 15 minutes 1W; expiry -- 1 week 1D); minimum -- 1 day ``` The first field specifies the domain as @, which means the current domain (by default, the zone name, as shown in the /etc/named.conf file). The next field specifies a TTL of one day for this record. The class field is set to IN, which means the record is for Internet. The type field specifies the record type as SOA. The rest of the fields constitute the data for the SOA record. The data includes the name of the primary name server (in this case, @, or the current domain), the e-mail address of the technical contact, and five times enclosed in parentheses. The NS record specifies the authoritative name servers for a zone. A typical NS record looks like the following: ``` . 3600000 IN NS A.ROOT-SERVERS.NET. ``` In this case, the NS record lists the authoritative name server for the root zone. (Note that the name of the first field is a single period.) The Time To Live field specifies that the record is valid for 1,000 hours (3,600,000 seconds). The class is IN, for Internet; and the record type is NS. The final field lists the name of the name server (A.ROOT-SERVERS.NET.), which ends with a period. An A record specifies the address corresponding to a name. For example, the following A record shows the address of A.ROOT-SERVERS.NET. as 198.41.0.4: ``` A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 ``` In this case, the network class isn't specified because the field is optional, and the default is IN. PTR records are used for reverse mapping — converting an address to a name. Consider the following example: ``` 1 IN PTR localhost. ``` This record comes from a file for a zone named 0.0.127.in-addr.arpa. Therefore, this record says that the name associated with the address 127.0.0.1 is localhost. An MX record specifies the name of a host that accepts mail on behalf of a specific domain. For example, here's a typical MX record: ``` Server7 IN MX 10 mailhub.lnbsoft.com. ``` This record says that mail addressed to the host named server7 in the current domain is sent to mailhub.lnbsoft.com. (This host is called a mail exchanger.) The number 10 is the preference value. For a list of multiple MX records with different preference values, the ones with lower preference values are tried first. Armed with this bit of information about resource records, you can go through the zone files for the caching name server. #### The root zone file There are 13 root name servers for the Internet: most root servers are located in the United States. Information about the 13 root name servers is in the zone file referenced in the zone statement for the root zone in the /etc/named.conf file. (The root zone file is /var/named/named.ca in Fedora, /etc/bind/db.root in Debian, Ubuntu, and Xandros, and /var/ lib/named/root.hint in SUSE.) The following listing shows the root zone file: ``` ; This file holds the information on root name servers needed to ; initialize cache of Internet domain name servers ; (e.g. reference this file in the "cache . <file>" ; configuration file of BIND domain name servers). ; This file is made available by InterNIC ; under anonymous FTP as ; file /domain/named.cache ; on server FTP.INTERNIC.NET : -OR- RS.INTERNIC.NET ; last update: Jan 29, 2004 ; related version of root zone: 2004012900 ; formerly NS.INTERNIC.NET . 3600000 IN NS A.ROOT-SERVERS.NET. A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4 ; formerly NS1.ISI.EDU . 3600000 NS B.ROOT-SERVERS.NET. B.ROOT-SERVERS.NET. 3600000 A 192.228.79.201 ; formerly C.PSI.NET . 3600000 NS C.ROOT-SERVERS.NET. C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12 ; formerly TERP.UMD.EDU . 3600000 NS D.ROOT-SERVERS.NET. D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90 ; formerly NS.NASA.GOV . 3600000 NS E.ROOT-SERVERS.NET. E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10 ``` **Book IV** Chapter 6 ``` ; formerly NS.ISC.ORG . 3600000 NS F.ROOT-SERVERS.NET. F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241 ; formerly NS.NIC.DDN.MIL . 3600000 NS G.ROOT-SERVERS.NET. G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4 ; formerly AOS.ARL.ARMY.MIL . 3600000 NS H.ROOT-SERVERS.NET. H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53 ; formerly NIC.NORDU.NET . 3600000 NS I.ROOT-SERVERS.NET. I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17 ; operated by VeriSign, Inc. . 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 192.58.128.30 ; operated by RIPE NCC . 3600000 NS K.ROOT-SERVERS.NET. K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129 ; operated by ICANN . 3600000 NS L.ROOT-SERVERS.NET. L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12 ; operated by WIDE . 3600000 NS M.ROOT-SERVERS.NET. M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33 ; End of File ``` This file contains NS and A resource records that specify the names of authoritative name servers and their addresses for the root zone (indicated by the . in the first field of each NS record). The comment lines in the file begin with a semicolon. These comments give you hints about the location of the 13 root name servers. This file is a necessity for any name server because the name server has to be able to reach at least one root name server. #### The localhost, zone file The /etc/named.conf file includes a zone statement for the localhost zone that specifies the zone file as localhost.zone. That file is located in the /var/named directory in Fedora, in the /var/local/named directory in SUSE, and in /etc/bind/db.local in Debian and Xandros. Here's a listing of what the localhost.zone file contains: ``` $TTL 86400 $ORIGIN localhost. @ 1D IN SOA @ root (42 ; serial (d. adams) 3H ; refresh 15M ; retry 1W ; expiry 1D) ; minimum 1D IN NS @ 1D IN A 127.0.0.1 ``` This zone file starts with a \$TTL directive that sets the default TTL (Time To Live) to one day (86400 seconds) for subsequent records with undefined TTLs. Next, the \$ORIGIN directive sets the domain name to localhost. After these two directives, the localhost.zone file contains three resource records (RRs): an SOA record, an NS record, and an A record. The SOA and NS records specify localhost as the primary authoritative name server for the zone. The A record specifies the address of localhost as 127.0.0.1. #### The zone file for reverse mapping 127.0.0.1 The third zone statement in the /etc/named.conf file specifies a reverse-mapping zone named 0.0.127.in-addr.arpa. For this zone, the zone file is /var/named/named.localhost in Fedora, /var/lib/named/127.0.0. zone in SUSE, and /etc/bind/db.127 in Debian, Ubuntu, and Xandros. This zone file contains the following: ``` $TTL 86400 @ IN SOA localhost. root.localhost. (1997022700; Serial 28800; Refresh 14400; Retry 3600000; Expire 86400); Minimum IN NS localhost. 1 IN PTR localhost. ``` The SOA and NS records specify localhost as the primary name server. The PTR record specifies localhost as the name corresponding to the address 127.0.0.1. The SOA record also shows root.localhost. as the e-mail address of the technical contact for the domain. The DNS zone files use the format user.host. (note the ending period) format for the e-mail address. When sending any e-mail to the contact, you have to replace the first period with @ and remove the final period. #### Caching name server: Startup and test After you've studied the configuration files for the caching name server, you can start the name server and see it in operation. Book IV Chapter 6 Vianaging DNS To start the name server, log in as root and type /etc/init.d/named start in Fedora and SUSE. To ensure that the named server starts every time you reboot the system, type chkconfig -- level 35 named on in Fedora and SUSE. In Debian, Ubuntu, and Xandros, type /etc/init.d/bind9 start to start the named server. The named server writes diagnostic log messages in the /var/log/messages file. After you start named, you can check the log messages by opening /var/log/messages in a text editor. If no error messages are from named, you can proceed to test the name server. Before you try the caching name server, you have to specify that name server as your primary one. To do so, make sure that the first line in the / etc/resolv.conf file is the following: ``` nameserver 127.0.0.1 ``` Now you can use host to test the name server. For example, to look up the IP address of www.gao.gov by using the caching name server on localhost, type the following command: ``` host www.gao.gov localhost ``` Here's the resulting output from the host command: ``` Using domain server: Name: localhost Address: 127.0.0.1#53 Aliases: www.gao.gov. has address 161.203.16.77 ``` As the output shows, the host command uses localhost as the DNS server and returns the IP address of www.gao.gov. If you get output similar to this, the caching name server is up and running. # Configuring a primary name server The best way to configure a primary name server is to start by configuring a caching name server (as explained in the previous sections). Then, add master zones for the domains for which you want this name server to be the primary name server. For example, suppose you want to define a primary name server for the server7.net domain. Here are the steps I go through to configure that primary name server on a Fedora system (after logging in as root): #### Add the following zone statements to the /etc/named.conf file: ``` zone "server7.net" IN { type master; file "server7.zone"; ``` ``` }; zone "0.168.192.in-addr.arpa" IN { type master; file "0.168.192.zone"; ``` 2. Create the zone file /var/named/server7. zone with the following lines in it: ``` $TTL 86400 $ORIGIN server7.net. @ 1D IN SOA @ root.server7.net (100 ; serial 3H ; refresh 15M; retry 1W ; expiry 1D) ; minimum 1D IN NS @ 1D IN A 192.168.0.7 wxp IN A 192.168.0.2 ``` **3. Create the zone file** /var/named/0.168.192.zone with the following lines in it: ``` $TTL 86400 ; Remember zone name is: 0.168.192.in-addr.arpa @ IN SOA server7.net. root.server7.net (1; Serial 28800 ; Refresh 14400 ; Retry 3600000 ; Expire 86400) ; Minimum IN NS server7.net. 7 IN PTR server7.net. 2 IN PTR wxp.server7.net. ``` 4. To test the new configuration, restart the named server with the following command: ``` /etc/init.d/named restart ``` 5. Use dig or host to query the DNS server. For example, here's how to use host to check the address of the host wxp.server7.net at the DNS server running on localhost: ``` host wxp.server7.net localhost ``` This command results in the following output: ``` Using domain server: Name: localhost Address: 127.0.0.1#53 Aliases: wxp.server7.net has address 192.168.0.2 ``` If you want to use dig to check the DNS server, type the following command: ``` dig @localhost wxp.server7.net ``` **Book IV** Chapter 6 That @localhost part specifies the DNS server that dig contacts. When you successfully use dig to contact a DNS server, you can get a bit fancier with what you ask that server to do. Here, for example, is the command to type to try a reverse lookup with the IP address 192.168.0.2: host 192.168.0.2 localhost This command displays the following output: Using domain server: Name: localhost Address: 127.0.0.1#53 Aliases: 2.0.168.192.in-addr.arpa domain name pointer wxp.server7.net # **Book V Administration** # Contents at a Glance | Chapter 1: Introducing Basic System Administration | | |---|-----| | Taking Stock of System Administration Tasks | | | Introducing Some GUI Sysadmin Tools
How to Become root | | | Understanding How Linux Boots | | | Taking Stock of Linux System Configuration Files | | | Monitoring System Performance | | | Viewing System Information with the /proc File System | | | Understanding Linux Devices | | | Managing Loadable Driver Modules | 328 | | Scheduling Jobs in Linux | 330 | | Chapter 2: Managing Users and Groups | | | Adding User Accounts | 337 | | Understanding the /etc/passwd File | | | Managing Groups | | | Other User and Group Administration Values | | | Exploring the User Environment | | | Changing User and Group Ownership of Files | 350 | | Chapter 3: Managing File Systems | | | Exploring the Linux File System | 351 | | Sharing Files with NFS | | | Backing Up and Restoring Files | | | Accessing a DOS or Windows File System | 368 | | Chapter 4: Working with Samba and NFS | | | Sharing Files with NFS | 373 | | Setting Up a Windows Server Using Samba | | # Chapter 1: Introducing Basic System Administration #### In This Chapter - ✓ Introducing the GUI sysadmin tools - **✓** Becoming root - Understanding the system startup process - **✓** Taking stock of the system configuration files - ✓ Viewing system information through the /proc file system - **✓** Monitoring system performance - Managing devices - ✓ Scheduling jobs System administration, or sysadmin, refers to whatever has to be done to keep a computer system up and running. The system administrator (the sysadmin) is whoever is in charge of taking care of these tasks. If you're running Linux at home or in a small office, you're most likely the system administrator for your systems. Or maybe you're the system administrator for an entire LAN full of Linux systems. Regardless of your position or title, this chapter will introduce you to basic system administration procedures and show you how to perform some common tasks. # Taking Stock of System Administration Tasks So what are system administration tasks? An off-the-cuff reply is *anything* you have to do to keep the system running well. More accurately, though, a system administrator's duties include - ◆ Adding and removing user accounts: You have to add new user accounts and remove unnecessary user accounts. If a user forgets the password, you have to change the password. - ◆ Managing the printing system: You have to turn the print queue on or off, check the print queue's status, and delete print jobs if necessary. - ◆ Installing, configuring, and upgrading the operating system and various utilities: You have to install or upgrade parts of the Linux operating system and other software that are part of the operating system. - ◆ Installing new software: You have to install software that comes in various package formats, such as RPM or DEB. You also have to download and unpack software that comes in source-code form and then build executable programs from the source code. - ◆ Managing hardware:
Sometimes you have to add new hardware and install drivers so the devices work properly. - ◆ Making backups: You have to back up files, whether to a DVD drive, a USB memory stick, an external hard drive, or tape. - ◆ Mounting and unmounting file systems: When you want to access the files on a CD-ROM, for example, you have to mount that CD-ROM's file system on one of the directories in your Linux file system. You may also have to mount old floppy disks from the archive closet, in both Linux format and DOS format. - ◆ Automating tasks: You have to schedule Linux tasks to take place automatically (at specific times) or periodically (at regular intervals). - ◆ Monitoring the system's performance: You may want to keep an eye on system performance to see where the processor is spending most of its time and to see the amount of free and used memory in the system. - ♦ Starting and shutting down the system: Although starting the system typically involves nothing more than powering up the PC, you do have to take some care when you shut down your Linux system. If your system is set up for a graphical login screen, you can perform the shutdown operation by choosing a menu item from the login screen. Otherwise, use the shutdown command to stop all programs before turning off your PC's power switch. - Monitoring network status: If you have a network presence (whether a LAN, a DSL line, or a cable modem connection), you may want to check the status of various network interfaces and make sure your network connection is up and running. - ◆ Setting up host and network security: You have to make sure that system files are protected and that your system can defend itself against attacks over the network. - Monitoring security: You have to keep an eye on any intrusions, usually by checking the log files. That's a long list of tasks! Not all these items are covered in this chapter, but the rest of this minibook describes most of these tasks. The focus in this chapter is on some of the basics, such as using the GUI tools, explaining how to become root (the superuser), describing the system configuration files, and showing you how to monitor system performance, manage devices, and set up periodic jobs. # Introducing Some GUI Sysadmin Tools Each Linux distribution comes with GUI tools for performing system administration tasks. The GUI tools prompt you for input and then run the necessary Linux commands to perform the task. Although there are slight differences among them, the tools have become more and more uniform as time has passed. For example, Figure 1-1 shows the YaST Control Center available in SUSE, and Figure 1-2 shows the System Settings interface in Ubuntu. Aside from YaST having more options, you should notice that there is great similarity between the interfaces. Figure 1-1: YaST Control Center is your starting point for many sysadmin tasks in SUSE. The left side of the YaST Control Center shows icons for the categories of tasks you can perform. The right side shows icons for specific tasks in the currently selected category. When you click an icon on the right side of the YaST Control Center, a new YaST window appears and enables you to perform that task. As you can see from the entries in the YaST Control Center, it is truly meant to be a one-stop-shopping spot for all your sysadmin chores. Figure 1-3 shows the Settings interface in Fedora and you can see that while the icons differ a bit from those found in the other distributions, most of the major chores an administrator deals with are capable of being addressed from here. Book V Chapter 1 Basic System Administration Figure 1-2: The Settings interface in Ubuntu offers many tools similar to those in YaST. Figure 1-3: The Settings interface in Fedora differs a bit from Ubuntu. Since YaST is the most complete of the lot, Table 1-1 lists the common tasks found in the Control Center. | Table 1-1 | Tasks by Category in the YaST Control Center | |-----------------------|--| | This Category | Enables You to Configure or Manage the Following | | Software | Online Update, Installation Source, Installation in Xen
Environment, Installation into Directory, Media Check, Patch
CD Update, Software Management, System Update | | Hardware | Bluetooth, CD-ROM Drives, Disk Controller, Graphics Card
and Monitor, Hardware Information, IDE DMA Mode, Infrared
Device, Joystick, Keyboard Layout, Mouse Model, Printer,
Scanner, Sound, TV Card | | System | /etc/sysconfig Editor, Boot Loader Configuration, Boot or Rescue, Date and Time, LVM, Language, PCI Device Drivers, Partitioner, Power Management, Powertweak, Profile Manager, System Backup, System Restoration, System Services (run level) | | Network
Devices | DSL, Fax, ISDN, Modem, Network Card, Phone Answering
Machine | | Network
Services | DHCP Server, DNS Server, DNS Host and Name, HTTP Server, Host Names, Kerberos Client, LDAP Client, Mail Transfer Agent, NFS Client, NFS Server, NIS Client, NIS Server, NTP Client, Network Services (xinetd), Proxy, Remote Administration, Routing, SLP Browser, Samba Client, Samba Server, TFTP Server | | Security and
Users | Firewall, Group Management, Local Security, User
Management | | Support | Where you can find documentation and help resources | | Miscellaneous | Autoinstallation, Post a Support Query, Vendor Driver CD, View Start-up Log, View System Log | ## How to Become root You have to log in as root to perform system administration tasks. The root user is the superuser and the only account with all the privileges needed to do anything in the system. Common wisdom says you should *not* normally log in as root. When you're root, you can easily delete all the files with one misstep — especially when you're typing commands. For example, you type the command rm *.html to delete all files that have the .html extension. But what if you accidentally press the spacebar after the asterisk (*)? The shell takes the command to be rm *.html and — because * matches any filename — deletes everything in the current directory. Seems implausible until it happens to you! Book V Chapter 1 Basic System Administration #### Using the su - command If you're logged in as a normal user, how do you do any system administration chores? Well, you become root for the time being. If you're working at a terminal window or console, type su - Then enter the root password in response to the prompt. From this point, you're root. Do whatever you have to do. To return to your usual self, type exit That's it! It's that easy. By the way, Knoppix has a root user but doesn't have a root password, so you can become root by simply typing **su** - at the shell prompt in a terminal window. Also, Ubuntu doesn't have a root user. To perform any task that requires root privileges in Ubuntu, you must type **sudo** followed by the command and then provide your normal user password when prompted. In the Security minibook, the issue will be addressed more, but you can control who can use sudo through configuration files (or the YaST interface, as Figure 1-4 shows). Figure 1-4: Configuring who can use sudo. #### Becoming root for the GUI utilities Most Linux distributions include GUI utilities to perform system administration chores. If you use any of these GUI utilities to perform a task that requires you to be root, the utility typically pops up a dialog box that prompts you for the root password, as shown in Figure 1-5 (except in Ubuntu, where the GUI tools prompt for your normal user password). Just type the password and press Enter. If you don't want to use the utility, click Cancel. Book V Chapter 1 Introducing Basic System Administratio Figure 1-5: Type the root password and press Enter to gain root privileges. ### Recovering from a forgotten root password To perform system administration tasks, you have to know the root password. What happens if you forget the root password? Not to worry. You can reset the root password by following these steps: Reboot the PC (select Reboot as you log out of the GUI screen) or power up as usual. As soon you see the graphical GRUB boot loader screen that shows the names of the operating systems, you can boot. If your system runs the LILO boot loader, press Ctrl+X, type **linux single** at the boot: prompt, and press Enter. Then proceed to Step 4. If you don't see the graphical loader screen on reboot, it might not be installed (which can occasionally occur when choosing to install from a Live CD). If this is the case, it is recommended that you reinstall from the CD. 2. If you have more than one operating system installed, use the arrow key to select Linux as your operating system and then press the A key. GRUB prompts you for commands to add to its default boot command. 3. Press the spacebar, and then type single and press Enter. Linux starts as usual but runs in a single-user mode that doesn't require you to log in. After Linux starts, you see the following command-line prompt similar to the following: 4. Type the passwd command to change the root password as follows: sh-3.00# passwd Changing password for user root. New password: 5. Type the new root password that you want to use (it doesn't appear onscreen) and then press Enter. Linux asks for the password again, like this: Retype new password: 6. Type the password again and press Enter. If you enter the same password both times, the passwd command changes the root password. 7. Now type reboot and press Enter to reboot the PC. After Linux starts, it displays the familiar login screen. Now you can log in as root with the new password. In SUSE Linux, in Step 3, type **single init=/bin/sh** (instead of **single**) and before proceeding to
Step 4, at the command-line prompt, type **mount / -n -0 remount,rw**. Then perform Steps 4 through 6 to change the root password. After changing the password, type **mount / -n -o remount,ro**. Then continue to Step 7 and reboot the PC. Make sure that your Linux PC is *physically* secure. As these steps show, anyone who can physically access your Linux PC can simply reboot, set a new root password, and do whatever he or she wants with the system. Another way to protect against resetting the password is to set a GRUB password, which causes GRUB to require a valid password before it boots Linux. Of course, you must then remember to enter the GRUB password every time you boot your system! ## Understanding How Linux Boots Knowing the sequence in which Linux starts processes as it boots is important. You can use this knowledge to start and stop services, such as the web server and Network File System (NFS). The next few sections provide you with an overview of how Linux boots and starts the initial set of processes. These sections also familiarize you with the shell scripts that start various services on a Linux system. #### Understanding the init process When Linux boots, it loads and runs the core operating system program from the hard drive. The core operating system is designed to run other programs. A process named init starts the initial set of processes on your Linux system. To see the processes currently running on the system, type ps ax | more You get an output listing that starts like this: PID TTY STAT TIME COMMAND 1 ? S 0:22 init [2] The first column, with the heading PID, shows a number for each process. *PID* stands for process ID (identification) — a sequential number assigned by the Linux kernel. The first entry in the process list, with a PID of 1, is the init process. It's the first process, and it starts all other processes in your Linux system. That's why init is sometimes referred to as the *mother of all processes*. What the init process starts depends on - **♦ The run level,** an identifier that identifies a system configuration in which only a selected group of processes can exist. - ◆ The contents of the /etc/inittab file, a text file that specifies which processes to start at different run levels. - ◆ A number of shell scripts that are executed at specific run levels. (The scripts are located in the /etc/init.d directory and a number of subdirectories in /etc — these subdirectories have names that begin with rc.) Most Linux distributions use seven run levels — 0 through 6. The meaning of the run levels differs from one distribution to another. Table 1-2 shows the meanings of the run levels and points out some of the actions specific to Fedora, Debian, SUSE, Ubuntu, and Xandros. | Table 1-2 | Run Levels in Linux | | | | | |-----------|---|--|--|--|--| | Run Level | Meaning | | | | | | 0 | Shut down the system. | | | | | | 1 | Run in single-user standalone mode (no one else can log in; you work at the text console). | | | | | | 2 | Run in multiuser mode (Debian, Ubuntu, and Xandros use run level 2 as the default run level). | | | | | | 3 | Run in full multiuser mode (used for text mode login in Fedora and SUSE). | | | | | | 4 | Run in full multiuser mode (unused in Fedora and SUSE). | | | | | | 5 | Run in full multiuser mode (used as the default run level with graphical login in Fedora and SUSE). | | | | | | 6 | Reboot the system. | | | | | Book V Chapter 1 Introducing Basic System Administration The current run level together with the contents of the /etc/inittab file control which processes init starts in Linux. The default run level is 2 in Debian, Ubuntu, and Xandros. In Fedora and SUSE, run level 3 is used for text mode login screens and 5 for the graphical login screen. You can change the default run level by editing a line in the /etc/inittab file. To check the current run level, type the following command in a terminal window: /sbin/runlevel In Debian, the runlevel command prints an output like this: N 2 The first character of the output shows the previous run level (N means no previous run level), and the second character shows the current run level (2). In this case, the system started at run level 2. If you're in a GUI desktop in Fedora, the runlevel command should show 5 as the current run level. #### Examining the letclinittab file The /etc/inittab file is the key to understanding the processes that init starts at various run levels. You can look at the contents of the file by using the more command, as follows: more /etc/inittab To see the contents of the /etc/inittab file with the more command, you don't have to log in as root. To interpret the contents of the /etc/inittab file, follow these steps: 1. Look for the line that contains the phrase initdefault. Here's that line from the /etc/inittab file from a Debian system: id:2:initdefault: That line shows the default run level. In this case, it's 2. 2. Find all the lines that specify what init runs at run level 2. Look for a line that has a 2 between the first two colons (:). Here's a relevant line in Debian: ``` 12:2:wait:/etc/init.d/rc 2 ``` This line specifies that init executes the file /etc/init.d/rc with 2 as an argument. If you look at the file /etc/init.d/rc in a Debian system, you find it's a shell script. You can study this file to see how it starts various processes for run levels 1 through 5. Each entry in the /etc/inittab file tells init what to do at one or more run levels — you simply list all run levels at which the process runs. Each inittab entry has four fields — separated by colons — in the following format: id:runlevels:action:process Table 1-3 shows what each field means. | Table 1-3 | Fields in Each inittab Entry | |-----------|--| | Field | Meaning | | id | A unique one- or two-character identifier. The init process uses this field internally. You can use any identifier you want, as long as you don't use the same identifier on more than one line. | | runlevels | A sequence of zero or more characters, each denoting a run level. For example, if the runlevels field is 12345, that entry applies to each of the run levels 1 through 5. This field is ignored if the action field is set to sysinit, boot, or bootwait. | | action | What the init process will do with this entry. If this field is initdefault, for example, init interprets the runlevels field as the default run level. If this field is set to wait, init starts the program or script specified in the process field and waits until that process exits. | | process | Name of the script or program that init starts. Some settings of the action field require no process field. For example, when the action field is initdefault, there's no need for a process field. | #### Trying a new run level with the init command To try a new run level, you don't have to change the default run level in the /etc/inittab file. If you log in as root, you can change the run level (and, consequently, the processes that run in Linux) by typing **init** followed by the run level. For example, to put the system in single-user mode, type the following: init 1 Thus, if you want to try run level 3 without changing the default run level in /etc/inittab file, enter the following command at the shell prompt: init 3 Book V Chapter 1 Basic System Administration The system ends all current processes and enters run level 3. By default, the init command waits 20 seconds before stopping all current processes and starting the new processes for run level 3. To switch to run level 3 immediately, type the command init -t0 3. The number after the -t option indicates the number of seconds init waits before changing the run level. You can also use the telinit command, which is simply a symbolic link (a shortcut) to init. If you make changes to the /etc/inittab file and want init to reload its configuration file, use the command telinit q. #### Understanding the Linux startup scripts The init process runs a number of scripts at system startup. In the following discussions, a Debian system is used as an example, but the basic sequence is similar in other distributions — only the names and locations of the scripts may vary. If you look at the /etc/inittab file in a Debian system, you find the following lines near the beginning of the file: # Boot-time system configuration/initialization script. si::sysinit:/etc/init.d/rcS The first line is a comment line. The second line causes init to run the /etc/init.d/rcS script — the first Linux startup script that init runs in a Debian system. The rcS script performs many initialization tasks, such as mounting the file systems, setting the clock, configuring the keyboard layout, starting the network, and loading many other driver modules. The rcS script performs these initialization tasks by calling many other scripts and reading configuration files located in the /etc/rcS.d directory. After executing the /etc/init.d/rcS script, the init process runs the /etc/init.d/rc script with the run level as an argument. For example, for run level 2, the following line in /etc/inittab specifies what init executes: 12:2:wait:/etc/init.d/rc 2 This example says init executes the command $/\text{etc/init.d/rc}\ 2$ and waits until that command completes. The /etc/init.d/rc script is somewhat complicated. Here's how it works: ♦ It executes scripts in a directory corresponding to the run level. For example, for run level 2, the /etc/init.d/rc script runs the scripts in the /etc/rc2.d directory. ♦ In the directory that corresponds with the run level, /etc/init.d/rc looks for all files that begin with K and
executes each of them with the stop argument. This argument kills any currently running processes. Then it locates all files that begin with S and executes each file with a start argument. This argument starts the processes needed for the specified run level. To see it executed at run level 2, type the following command: ``` ls -l /etc/rc2.d ``` In the resulting listing, the K scripts — the files whose names begin with K — stop (or kill) servers, whereas the S scripts start servers. The /etc/init.d/rc script executes these files in the order in which they appear in the directory listing. #### Manually starting and stopping servers In Linux, the server startup scripts reside in the /etc/init.d directory. You can manually invoke scripts in this directory to start, stop, or restart specific processes — usually servers. For example, to stop the FTP server (the server program is vsftpd), type the following command: ``` /etc/init.d/vsftpd stop ``` If vsftpd is already running and you want to restart it, type the following command: ``` /etc/init.d/vsftpd restart ``` You can enhance your system administration skills by familiarizing yourself with the scripts in the /etc/init.d directory. To see its listing, type the following command: ``` ls /etc/init.d ``` The script names give you some clue about which server the script can start and stop. For example, the samba script starts and stops the processes required for Samba Windows networking services. At your leisure, you may want to study some of these scripts to see what each one does. You don't have to understand all the shell programming; the comments help you discover the purpose of each script. #### Automatically starting servers at system startup You want some servers to start automatically every time you boot the system. The exact commands to configure the servers vary from one distribution to another. Book V Chapter 1 Basic System Administration In Fedora and SUSE, use the chkconfig command to set up a server to start whenever the system boots into a specific run level. For example, if you start the SSH server, you want the sshd server to start whenever the system starts. You can make that happen by using the chkconfig command. To set sshd to start whenever the system boots into run level 3, 4, or 5, type the following command (while logged in as root): chkconfig --level 345 sshd on In Fedora and SUSE, you can also use the chkconfig command to check which servers are turned on or off. For example, to see the complete list of all servers for all run levels, type the following command: chkconfig --list In Debian, Ubuntu, and Xandros, you can use the update-rc.d command to enable a server to start automatically at system startup. For example, to set sshd to start automatically at the default run levels, type **update-rc.d sshd defaults** in a terminal window while logged in as root. You can also specify the exact run levels and the sequence number (the order in which each server starts). To find out more about the update-rc.d command, type **man update-rc.d** in a terminal window. ## Taking Stock of Linux System Configuration Files Linux includes a host of configuration files. All these files share text files that you can edit with any text editor. To edit these configuration files, you must log in as root. A selection of the most popular configuration files appears in Table 1-4, along with a brief description of each. This table gives you an idea of what types of configuration files a system administrator has to work with. In many cases, Linux includes GUI utility programs to set up many of these configuration files. | Table 1-4 | Some Linux Configuration Files | | | | |---------------------|--|--|--|--| | Configuration File | Description | | | | | /boot/grub | Location of files for the GRUB boot loader. | | | | | /boot/grub/menu.lst | Configuration file for the boot menu that GRUB displays before it boots your system. | | | | | /boot/System.map | Map of the Linux kernel (maps kernel addresses into names of functions and variables). | | | | | /boot/vmlinuz | The Linux kernel (the operating system's core). | | | | | Configuration File | Description | | | | | |--------------------------------|--|--|--|--|--| | /etc/apache2/httpd.conf | Configuration file for the Apache web server (Debian). | | | | | | /etc/apt/sources.list | Configuration file that lists the sources — FTP or websites or CD-ROM — from which the Advanced Packaging Tool (APT) obtains packages (Debian, Ubuntu, and Xandros). | | | | | | /etc/at.allow | Usernames of users allowed to use the at command to schedule jobs for later execution. | | | | | | /etc/at.deny | Usernames of users forbidden to use the at command. | | | | | | /etc/bashrc | System-wide functions and aliases for the bash shell (Fedora). | | | | | | /etc/bash.bashrc | System-wide functions and aliases for the bash shell (Debian, SUSE, Ubuntu, and Xandros). | | | | | | /etc/cups/cupsd.conf | Printer configuration file for the Common Unix Printing System (CUPS) scheduler. | | | | | | /etc/fonts | Directory with font configuration files. (In particular, you can put local font configuration settings in the file /etc/fonts/local.conf.) | | | | | | /etc/fstab | Information about file systems available for mounting and where each file system is to be mounted. | | | | | | /etc/group | Information about groups. | | | | | | /etc/grub.conf | The configuration for the GRUB boot loader in Fedora and SUSE. | | | | | | /etc/hosts | List of IP numbers and their corresponding hostnames. | | | | | | /etc/hosts.allow | Hosts allowed to access Internet services on this system. | | | | | | /etc/hosts.deny | Hosts forbidden to access Internet services on this system. | | | | | | /etc/httpd/conf/httpd.
conf | Configuration file for the Apache web server (Fedora). | | | | | | /etc/init.d | Directory with scripts to start and stop various servers. | | | | | | /etc/inittab | Configuration file used by the init process that starts all the other processes. | | | | | Book V Chapter 1 Introducing Basic System Administration (continued) | Configuration File | Description | |----------------------|--| | /etc/issue | File containing a message to be printed before displaying the text mode login prompt (usually the distribution name and the version number). | | /etc/lilo.conf | The configuration for the Linux Loader (LILO) — one of the boot loaders that can load the operating system from disk (present only if you use the LILO boot loader). | | /etc/login.defs | Default information for creating user accounts, used by the useradd command | | /etc/modprobe.conf | Configuration file for loadable kernel modules, used by the modprobe command (Fedora and SUSE). | | /etc/modules.conf | Configuration file for loadable modules (Debian and Xandros). | | /etc/mtab | Information about currently mounted file systems. | | /etc/passwd | Information about all user accounts. (Actua passwords are stored in /etc/shadow.) | | /etc/profile | System-wide environment and startup file for the bash shell. | | /etc/profile.d | Directory containing script files (with names that end in .sh) that the /etc/profile script executes. | | /etc/init.d/rcS | Linux initialization script in Debian, SUSE,
Ubuntu, and Xandros. | | /etc/rc.d/rc.sysinit | Linux initialization script in Fedora. | | /etc/shadow | Secure file with encrypted passwords for al user accounts (can be read by only root). | | /etc/shells | List of all the shells on the system that the user can use. | | /etc/skel | Directory that holds initial versions of files such as .bash_profile that copy to a new user's home directory. | | /etc/sysconfig | Linux configuration files (Fedora and SUSE) | | /etc/sysctl.conf | Configuration file with kernel parameters that are read in and set by sysct1 at system startup. | | /etc/termcap | Database of terminal capabilities and options (Fedora and SUSE). | | | | | Configuration File | Description | |--------------------|--| | /etc/udev | Directory containing configuration files for udev — the program that provides the ability to dynamically name hot-pluggable devices and create device files in the /dev directory. | | /etc/X11 | Directory with configuration files for the X Window System (X11) and various display managers such as gdm and xdm. | | /etc/X11/xorg.conf | Configuration file for X.Org X11 — the X Window System (Fedora, Ubuntu, and SUSE). | | /etc/xinetd.conf | Configuration for the xinetd daemon that starts a number of Internet services on demand. | | /etc/yum.conf | Configuration for the Yum package updater and installer (Fedora). | | /var/log/apache2 | Web server access and error logs (Debian). | | /var/log/cron | Log file with messages from the cron process that runs scheduled jobs. | | /var/log/boot.msg | File with boot messages (SUSE). | | /var/log/dmesg | File with boot messages (Debian, Fedora, Ubuntu, and Xandros). | | /var/log/httpd | Web server access and error logs (Fedora). | | /var/log/messages | System log. | #### Book V Chapter 1 Introducing Basic Syster Administration ## Monitoring System Performance When you're the system administrator, you must keep an eye on how well your Linux system is performing. You can monitor the overall performance of your system by looking at information such as - ◆ Central processing unit (CPU) usage - ♦ Physical memory usage - ◆ Virtual memory (swap-space) usage - ♦
Hard drive usage Linux comes with a number of utilities that you can use to monitor one or more of these performance parameters. The following sections introduce a few of these utilities and show you how to understand the information presented by said utilities. #### Using the top utility To view the top CPU processes — the ones that use most of the CPU time — you can use the text mode top utility. To start that utility, type **top** in a terminal window (or text console). The top utility then displays a text screen listing the current processes, arranged in the order of CPU usage, along with various other information, such as memory and swap-space usage. Figure 1-6 shows a typical output from the top utility. | 8 | 😕 🗎 🕕 ubuntu@ubuntu: ~ | | | | | | | | | | | |--------------------------|--|----|------|-------|------|------|---|------|------|-------------------------|--| | Tasks
%Cpu(s
KiB M | top - 17:41:15 up 51 min, 8 users, load average: 0.96, 0.24, 0.12
Tasks: 201 total, 1 running, 200 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.3 us, 0.4 sy, 0.0 ni, 98.3 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 4019356 total, 1820440 used, 2198916 free, 258004 buffers
KiB Swap: 0 total, 0 used, 0 free, 1225472 cached | | | | | st | | | | | | | PID | USER | PR | NI | VIRT | RES | SHR | S | %CPU | %MEM | TIME+ COMMAND | | | 6377 | ubuntu | 20 | 0 | 291m | 78m | 32m | S | 3.3 | 2.0 | 0:37.40 compiz | | | 6190 | root | 20 | 0 | 95896 | 19m | 9988 | S | 2.7 | 0.5 | 0:29.29 Xorg | | | 8095 | ubuntu | 20 | 0 | 144m | 15m | 11m | S | 2.3 | 0.4 | 0:02.09 gnome-terminal | | | 8341 | ubuntu | 20 | 0 | 132m | 13m | 10m | S | 0.7 | 0.4 | 0:00.20 gnome-screensho | | | 6281 | ubuntu | 20 | 0 | 5788 | 2728 | 780 | S | 0.3 | 0.1 | 0:01.46 dbus-daemon | | | 6442 | ubuntu | 20 | 0 | 63576 | 11m | 8788 | S | 0.3 | 0.3 | 0:01.42 gtk-window-deco | | | 8335 | ubuntu | 20 | 0 | 5208 | 1340 | 960 | R | 0.3 | 0.0 | 0:00.03 top | | | 1 | root | 20 | 0 | 3864 | 2256 | 1376 | S | 0.0 | 0.1 | 0:02.41 init | | | 2 | root | 20 | 0 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.00 kthreadd | | | 3 | root | 20 | 0 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.22 ksoftirqd/0 | | | 5 | root | 0 | -20 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.00 kworker/0:0H | | | 7 | root | 0 | - 20 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.00 kworker/u:0H | | | 8 | root | гt | 0 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.36 migration/0 | | | 9 | root | 20 | 0 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.00 rcu_bh | | | | root | 20 | 0 | 0 | 0 | | S | 0.0 | 0.0 | 0:00.57 rcu_sched | | | 11 | root | гt | 0 | 0 | 0 | 0 | | 0.0 | 0.0 | 0:00.00 watchdog/0 | | | 12 | root | гt | 0 | 0 | 0 | 0 | S | 0.0 | 0.0 | 0:00.00 watchdog/1 | | Figure 1-6: You can see the top CPU processes by using the top utility. The top utility updates the display every five seconds. If you keep top running in a window, you can continually monitor the status of your Linux system. To quit top, press Q or Ctrl+C or close the terminal window. The first five lines of the output screen (see Figure 1-6) provide summary information about the system, as follows: - ◆ The first line shows the current time, how long the system has been up, how many users are logged in, and three *load averages* the average number of processes ready to run during the last 1, 5, and 15 minutes. - The second line lists the total number of processes and the status of these processes. - ◆ The third line shows CPU usage what percentage of CPU time is used by user processes, what percentage by system (kernel) processes, and during what percentage of time the CPU is idle. - ◆ The fourth line shows how the physical memory is being used the total amount, how much is used, how much is free, and how much is allocated to buffers (for reading from the hard drive, for example). ◆ The fifth line shows how the virtual memory (or swap space) is being used — the total amount of swap space, how much is used, how much is free, and how much is being cached. Book V Chapter 1 Basic System Administration The table that appears below the summary information (refer to Figure 1-6) lists information about the current processes, arranged in decreasing order by amount of CPU time used. Table 1-5 summarizes the meanings of the column headings in the table that top displays. | Table 1-5 | Column Headings in top Utility's Output | |-----------|--| | Heading | Meaning | | PID | Process ID of the process. | | USER | Username under which the process is running. | | PR | Priority of the process. | | NI | Nice value of the process — the value ranges from –20 (highest priority) to 19 (lowest priority) and the default is 0. (The <i>nice value</i> represents the relative priority of the process: The higher the value, the lower the priority and the nicer the process because it yields to other processes.) | | VIRT | Total amount of virtual memory used by the process, in kilobytes. | | RES | Total physical memory used by a task (typically shown in kilobytes, but an $\mathfrak m$ suffix indicates megabytes). | | SHR | Amount of shared memory used by process. | | S | State of the process (S for sleeping, D for uninterruptible sleep, R for running, Z for zombies — processes that should be dead but are still running — or \mathbb{T} for stopped). | | %CPU | Percentage of CPU time used since last screen update. | | %MEM | Percentage of physical memory used by the process. | | TIME+ | Total CPU time the process has used since it started. | | COMMAND | Shortened form of the command that started the process. | ### Using the uptime command You can use the uptime command to get a summary of the system's state. Just type the command like this: uptime It displays output similar to the following: This output shows the current time, how long the system has been up, the number of users, and (finally) the three load averages — the average number of processes that were ready to run in the past 1, 5, and 15 minutes. Load averages greater than 1 imply that many processes are competing for CPU time simultaneously. The load averages give you an indication of how busy the system is. #### Using the vmstat utility You can get summary information about the overall system usage with the vmstat utility. To view system usage information averaged over 5-second intervals, type the following command (the second argument indicates the total number of lines of output vmstat displays): vmstat 5 8 You see output similar to the following listing: The first line of output shows the averages since the last reboot. After that, vmstat displays the 5-second average data seven more times, covering the next 35 seconds. The tabular output is grouped as six categories of information, indicated by the fields in the first line of output. The second line shows further details for each of the six major fields. You can interpret these fields by using Table 1-6. | Table 1-6 | Meaning of Fields in the vmstat Utility's Output | |------------|--| | Field Name | Description | | procs | Number of processes and their types: $r = $ processes waiting to run, $b = $ processes in uninterruptible sleep, $w = $ processes swapped out but ready to run. | | memory | Information about physical memory and swap-space usage (all numbers in kilobytes): swpd = virtual memory used, free = free physical memory, buff = memory used as buffers, cache = virtual memory that's cached. | | Field Name | Description | |------------|---| | swap | Amount of swapping (the numbers are in kilobytes per second): $si = amount$ of memory swapped in from disk, $so = amount$ of memory swapped to disk. | | io | Information about input and output. (The numbers are in blocks per second, where the block size depends on the disk device.) $bi = $ rate of blocks sent to disk, $bo = $ rate of blocks received from disk. | | system | Information about the system: in = number of interrupts per second (including clock interrupts), cs = number of context switches per second — how many times the kernel changed which process was running. | | cpu | Percentages of CPU time used: $us = percentage$ of CPU time used by user processes, $sy = percentage$ of CPU time used by system processes, $id = percentage$ of time CPU is idle, $wa = time$ spent waiting for input or output (I/O). | Book V Chapter 1 Basic System Administration In the vmstat utility's output, high values in the si and so fields indicate too much swapping. (*Swapping* refers to the copying of information between physical memory and the virtual memory on the hard drive.) High numbers in the bi and bo fields indicate too much disk activity. #### Checking disk performance and disk usage Linux comes with the /sbin/hdparm program to control IDE or ATAPI hard drives, which are common on most PCs. One feature of the hdparm program is that you can use the -t option to determine the rate at which data is read from the disk into a buffer in memory. For example, here's the result of typing /sbin/hdparm -t /dev/hda on
one system: ``` /dev/hda: Timing buffered disk reads: 178 MB in 3.03 seconds = 58.81 MB/sec ``` The command requires the IDE drive's device name (/dev/hda for the first hard drive and /dev/hdb for the second hard drive) as an argument. If you have an IDE hard drive, you can try this command to see how fast data is read from your system's disk drive. To display the space available in the currently mounted file systems, use the df command. If you want a more readable output from df, type the following command: Here's a typical output from this command: ``` Filesystem Size Used Avail Use% Mounted on /dev/hda5 7.1G 3.9G 2.9G 59% / /dev/hda3 99M 18M 77M 19% /boot none 125M 0 125M 0% /dev/shm /dev/scd0 2.6G 2.6G 0 100% /media/cdrecorder ``` As this example shows, the -h option causes the df command to display the sizes in gigabytes (G) and megabytes (M). To check the disk space being used by a specific directory, use the du command — you can specify the -h option to view the output in kilobytes (K) and megabytes (M), as shown in the following example: ``` du -h /var/log ``` Here's a typical output of that command: ``` 152K /var/log/cups 4.0K /var/log/vbox 4.0K /var/log/httpd 508K /var/log/gdm 4.0K /var/log/samba 8.0K /var/log/mail 4.0K /var/log/news/OLD 8.0K /var/log/news 4.0K /var/log/squid 2.2M /var/log ``` The du command displays the disk space used by each directory, and the last line shows the total disk space used by that directory. If you want to see only the total space used by a directory, use the -s option. For example, type **du -sh /home** to see the space used by the /home directory. The command produces output that looks like this: ``` 89M /home ``` # Viewing System Information with the /proc File System Your Linux system has a special /proc file system. You can find out many things about your system from this file system. In fact, you can even change kernel parameters through the /proc file system (just by writing to a file in that file system), thereby modifying the system's behavior. The /proc file system isn't a real directory on the hard drive but a collection of data structures in memory, managed by the Linux kernel, that appears to you as a set of directories and files. The purpose of /proc (also called the *process file system*) is to give you access to information about the Linux kernel as well as to help you find out about all processes currently running on your system. You can access the /proc file system just as you access any other directory, but you have to know the meaning of various files to interpret the information. Typically, you can use the cat or more commands to view the contents of a file in /proc. The file's contents provide information about some aspect of the system. As with any directory, start by looking at a detailed directory listing of /proc. To do so, log in as root and type **ls -l /proc** in a terminal window. In the output, the first set of directories (indicated by the letter d at the beginning of the line) represents the processes currently running on your system. Each directory that corresponds to a process has the process ID (a number) as its name. Notice also a very large file named /proc/kcore; that file represents the *entire* physical memory of your system. Although /proc/kcore appears in the listing as a huge file, no single physical file occupies that much space on your hard drive — so don't try to remove the file to reclaim disk space. Several files and directories in /proc contain interesting information about your Linux PC. The /proc/cpuinfo file, for example, lists the key characteristics of your system, such as processor type and floating-point processor information. You can view the processor information by typing cat /proc/cpuinfo. For example, here's what appears when cat /proc/cpuinfo is run on a sample system: ``` processor: 0 vendor_id : GenuineIntel cpu family: 15 model: 3 model name : Intel(R) Celeron(R) CPU 2.53GHz stepping: 3 cpu MHz : 2533.129 cache size : 256 KB fdiv bug : no hlt bug : no f00f bug : no coma bug : no fpu : yes fpu exception : yes cpuid level : 5 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe pni monitor ds cpl cid bogomips : 4997.12 ``` Book V Chapter 1 Introducing Basic System Administration This output is from a 2.5-GHz Celeron system. The listing shows many interesting characteristics of the processor. Note the line that starts with $fdiv_bug$. Remember the infamous Pentium floating-point division bug? The bug is in an instruction called fdiv (for floating-point division). Thus, the $fdiv_bug$ bug line indicates whether this particular Pentium has the bug. The last line in the /proc/cpuinfo file shows the BogoMIPS for the processor, as computed by the Linux kernel when it boots. BogoMIPS is something that Linux uses internally to time-delay loops. Table 1-7 summarizes some of the files in the /proc file system that provide information about your Linux system. You can view some of these files on your system to see what they contain, but note that not all files shown in Table 1-7 are present on your system. The specific contents of the /proc file system depend on the kernel configuration and the driver modules that are loaded (which, in turn, depend on your PC's hardware configuration). | Table 1-7 | Some Files and Directories in /proc | |-----------------------|--| | File Name | Content | | /proc/acpi | Information about Advanced Configuration and Power Interface (ACPI) — an industry-standard interface for configuration and power management on laptops, desktops, and servers. | | /proc/bus | Directory with bus-specific information for each bus type, such as PCI. | | /proc/cmdline | The command line used to start the Linux kernel (for example, ro root=LABEL= $/$ rhgb). | | /proc/cpuinfo | Information about the CPU (the microprocessor). | | /proc/devices | Available block and character devices in your system. | | /proc/dma | Information about DMA (direct memory access) channels that are used. | | /proc/driver/
rtc | Information about the PC's real-time clock (RTC). | | /proc/
filesystems | List of supported file systems. | | /proc/ide | Directory containing information about IDE devices. | | /proc/
interrupts | Information about interrupt request (IRQ) numbers and how they are used. | | /proc/ioports | Information about input/output (I/O) port addresses and how they're used. | | /proc/kcore | Image of the physical memory. | | /proc/kmsg | Kernel messages. | | | | | File Name | Content | |----------------------|--| | /proc/loadavg | Load average (average number of processes waiting to run in the last 1, 5, and 15 minutes). | | /proc/locks | Current kernel locks (used to ensure that multiple processes don't write to a file at the same time). | | /proc/meminfo | Information about physical memory and swap-space usage. | | /proc/misc | Miscellaneous information. | | /proc/modules | List of loaded driver modules. | | /proc/mounts | List of mounted file systems. | | /proc/net | Directory with many subdirectories that contain information about networking. | | /proc/
partitions | List of partitions known to the Linux kernel. | | /proc/pci | Information about PCI devices found on the system. | | /proc/scsi | Directory with information about SCSI devices found on the system (present only if you have a SCSI device). | | /proc/stat | Overall statistics about the system. | | /proc/swaps | Information about the swap space and how much is used. | | /proc/sys | Directory with information about the system. You can change kernel parameters by writing to files in this directory. (Using this method to tune system performance requires expertise to do properly.) | | /proc/uptime | Information about how long the system has been up. | | /proc/version | Kernel version number. | Book V Chapter 1 Basic System Administration You can navigate the /proc file system just as you'd work with any other directories and files in Linux. Use the more or cat commands to view the contents of a file. ## **Understanding Linux Devices** Linux treats all devices as files and uses a device just as it uses a file — opens it, writes data to it, reads data from it, and closes it when finished. This ability to treat every device as a file is possible because of *device drivers*, which are special programs that control a particular type of hardware. When the kernel writes data to the device, the device driver does whatever is appropriate for that device. For example, when the kernel writes data to the DVD drive, the DVD device driver puts that data onto the physical medium of the DVD disk. Thus the device driver isolates the device-specific code from the rest of the kernel and makes a device look like a file. Any application can access a device by opening the file specific to that device. ### Device files Applications can access a device as if it were a file. These files, called *device* files, appear in the /dev directory in the Linux file system. If you use the 1s command to look at the list of files in the /dev directory, you see several thousand files. These files don't mean that your system has several thousand devices. The /dev directory has files for all possible types of devices — that's why the number of device files is so large. So how does the kernel know which device driver to use when an application opens a specific device file? The answer is in two numbers called the *major* and *minor device numbers*. Each device file is mapped to a specific device driver through these numbers. To see an
example of the major and minor device numbers, type the following command in a terminal window: ``` ls -1 /dev/hda ``` You see a line of output similar to the following: ``` brw-rw---- 1 root disk 3, 0 Aug 16 14:50 /dev/hda ``` In this line, the major and minor device numbers appear just before the date. In this case, the major device number is 3 and the minor device number is 0. The kernel selects the device driver for this device file by using the major device number. You don't have to know much about device files and device numbers, except to be aware of their existence. In case you're curious, all the major and minor numbers for devices are assigned according to device type. The Linux Assigned Names And Numbers Authority (LANANA) assigns these numbers. You can see the current device list at www.lanana.org/docs/device-list/devices-2.6+.txt. #### Block devices The first letter in the listing of a device file also provides an important clue. For the /dev/hda device, the first letter is b, which indicates that /dev/hda is a block device — one that can accept or provide data in chunks (typically 512 bytes or 1K). By the way, /dev/hda refers to the first IDE hard drive on your system (the C: drive in Windows). Hard drives and CD-ROM drives are examples of block devices. #### Character devices If the first letter in the listing of a device file is c, the device is a *character device* — one that can receive and send data one character (one byte) at a time. For example, the serial port and parallel ports are character devices. To see the specific listing of a character device, type the following command in a terminal window: ``` ls -1 /dev/ttyS0 ``` The listing of this device is similar to the following: ``` crw-rw---- 1 root uucp 4, 64 Aug 16 14:50 /dev/ttyS0 ``` Note that the very first letter is c because /dev/ttyS0 — the first serial port — is a character device. #### Network devices Network devices that enable your system to interact with a network — for example, Ethernet and dial-up *Point-to-Point Protocol* (PPP) connections — are special because they need no file to correspond to the device. Instead, the kernel uses a special name for the device. For example, Ethernet devices are named eth0 for the first Ethernet card, eth1 for the second one, and so on. PPP connections are named ppp0, ppp1, and so on. Because network devices aren't mapped to device files, no files corresponding to these devices are in the /dev directory. #### Persistent device naming with udev Starting with the Linux kernel 2.6, a new approach for handling devices was added, based on the following features: - ◆ sysfs: The kernel provides the sysfs file system, which is mounted on the /sys directory of the file system. The sysfs file system displays all the devices in the system as well as lots of information about each device, including the location of the device on the bus, attributes such as name and serial number, and the major and minor numbers of the device. - /sbin/hotplug: This program is called whenever a device is added or removed. It can then do whatever is necessary to handle the device. - ♦ /sbin/udev: This program takes care of dynamically named devices based on device characteristics such as serial number, device number on a bus, or a user-assigned name based on a set of rules that are set through the text file /etc/udev/udev.rules. Book V Chapter 1 Basic System Administration The udev program's configuration file is /etc/udev/udev.conf. Based on settings in that configuration file, udev creates device nodes automatically in the directory specified by the udev_root parameter. For example, to manage the device nodes in the /dev directory, udev_root should be defined in /etc/udev/udev.conf as follows: udev root="/dev/" ## Managing Loadable Driver Modules To use any device, the Linux kernel must contain the driver. If the driver code is linked into the kernel as a *monolithic* program (a program in the form of a single, large file), adding a new driver means rebuilding the kernel with the new driver code. Rebuilding the kernel means you have to reboot the PC with the new kernel before you can use the new device driver. Luckily, the Linux kernel uses a modular design that does away with rebooting hassles. Linux device drivers can be created in the form of modules that the kernel can load and unload without having to restart the PC. Driver modules are one type of a broader category of software modules called *loadable kernel modules*. Other types of kernel modules include code that can support new types of file systems, modules for network protocols, and modules that interpret different formats of executable files. #### Loading and unloading modules You can manage the loadable device driver modules by using a set of commands. You have to log in as root to use some of these commands. Table 1-8 summarizes a few commonly used module commands. | Table 1-8 | Commands to Manage Kernel Modules | |-----------------|--| | This
Command | Does the Following | | insmod | Inserts a module into the kernel. | | rmmod | Removes a module from the kernel. | | depmod | Determines interdependencies between modules. | | ksyms | Displays a list of symbols along with the name of the module that defines the symbol. | | lsmod | Lists all currently loaded modules. | | modinfo | Displays information about a kernel module. | | modprobe | Inserts or removes a module or a set of modules intelligently. (For example, if module A requires B, $modprobe$ automatically loads B when asked to load A.) | If you have to use any of these commands, log in as root or type **su** - in a terminal window to become root. To see what modules are currently loaded, type lsmod You see a long list of modules. The list that you see will depend on the types of devices installed on your system. The list displayed by 1smod includes all types of Linux kernel modules, not just device drivers. For example, if you use the Ext3 file system, you typically find two modules — jbd and ext3 — that are part of the Ext3 file system (the latest file system for Linux). Besides 1smod, one commonly used module command is modprobe. Use modprobe when you need to manually load or remove one or more modules. The best thing about modprobe is that you don't need to worry if a module requires other modules to work. The modprobe command automatically loads any other module needed by a module. For example, to manually load the sound driver, use the command modprobe snd-card-0 This command causes modprobe to load everything needed to make sound work. You can use modprobe with the -r option to remove modules. For example, to remove the sound modules, use the following command: modprobe -r snd-card-0 This command gets rid of all the modules that the modprobe snd-card-0 command had loaded. #### Using the /etc/modprobe.conf file How does the modprobe command know that it needs to load the snd-intel8x0 driver module? The answer's in the /etc/modprobe.conf configuration file. That file contains a line that tells modprobe what it should load when it sees the module name snd-card-0. To view the contents of /etc/modprobe.conf, type cat /etc/modprobe.conf Book V Chapter 1 Introducing Basic System Administration For example, consider a /etc/modprobe.conf file that contains the following lines: ``` alias eth0 3c59x alias snd-card-0 snd-intel8x0 alias usb-controller uhci-hcd ``` Each line that begins with the keyword alias defines a standard name for an actual driver module. For example, the first line defines 3c59x as the actual driver name for the alias eth0, which stands for the first Ethernet card. Similarly, the second line defines snd-intel8x0 as the module to load when the user uses the name snd-card-0. The modprobe command consults the /etc/modprobe.conf file to convert an alias to the real name of a driver module. It also consults the /etc/ modprobe.conf file for other tasks, such as obtaining parameters for driver modules. For example, you can insert lines that begin with the options keyword to provide values of parameters that a driver may need. For example, to set the debug-level parameter for the Ethernet driver to 5 (this parameter generates lots of information in /var/log/messages), add the following line to the /etc/modprobe.conf file: ``` options 3c59x debug=5 ``` This line specifies 5 as the value of the debug parameter in the 3c59x module. If you want to know the names of the parameters that a module accepts, use the modinfo command. For example, to view information about the 3c59x driver module, type ``` modinfo 3c59x | more ``` From the resulting output, it's possible to tell that debug is the name of the parameter for setting the debug level. Unfortunately, the information displayed by the modinfo command can be cryptic. The only saving grace is that you may not have to do much more than use a graphical utility to configure the device, and the utility takes care of adding whatever is needed to configuration files, such as /etc/ modprobe.conf. ## Scheduling Jobs in Linux As a system administrator, you may have to run some programs automatically at regular intervals or execute one or more commands at a specified time in the future. Your Linux system includes the facilities to schedule jobs to run at any future date or time you want. You can also set up the system to perform a task periodically or just once. Here are some typical tasks you can perform by scheduling jobs on your Linux system: - ◆ Back up the files in the middle of the night - ◆ Download large files in the early morning when the system isn't busy - ♦ Send yourself messages as reminders of meetings - ◆ Analyze system logs periodically and look for any abnormal activities You can set up these jobs by using the at command or the crontab facility of Linux. The next few sections
introduce these job-scheduling features of Linux. ### Scheduling one-time jobs If you want to run one or more commands at a later time, you can use the at command. The atd *daemon* — a program designed to process jobs submitted using at — runs your commands at the specified time and mails the output to you. Before you try the at command, you need to know that the following configuration files control which users can schedule tasks using the at command: - /etc/at.allow contains the names of the users who may submit jobs using the at command. - /etc/at.deny contains the names of users not allowed to submit jobs using the at command. If these files aren't present or if you find an empty /etc/at.deny file, any user can submit jobs by using the at command. The default in Linux is an empty /etc/at.deny file; with this default in place, anyone can use the at command. If you don't want some users to use at, simply list their usernames in the /etc/at.deny file. To use at to schedule a one-time job for execution at a later time, follow these steps: Run the at command with the date or time when you want your commands executed. When you press Enter, the at > prompt appears, as follows: ``` at 21:30 at> ``` This method is the simplest way to indicate the time when you want to execute one or more commands — simply specify the time in a 24-hour format. In this case, you want to execute the commands at 9:30 p.m. tonight (or tomorrow, if it's already past 9:30 p.m.). You can, however, specify the execution time in many different ways. (See Table 1-9 for examples.) Book V Chapter 1 Introducing Basic System Administration 2. At the at> prompt, type the commands you want to execute as if you were typing at the shell prompt. After each command, press Enter and continue with the next command. When you finish entering the commands you want to execute, press Ctrl+D to indicate the end. Here's an example that shows how to execute the ps command at a future time: ``` at> ps at> <EOT> job 1 at 2014-12-28 21:30 ``` After you press Ctrl+D, the at command responds with the <EOT> message, a job number, and the date and time when the job will execute. | Table 1-9 Formats f | or the at Command for the Time of Execution | |-------------------------|--| | Command | When the Job Will Run | | at now | Immediately | | at now + 15
minutes | 15 minutes from the current time | | at now + 4 hours | 4 hours from the current time | | at now + 7 days | 7 days from the current time | | at noon | At noontime today (or tomorrow, if already past noon) | | at now next hour | Exactly 60 minutes from now | | at now next day | At the same time tomorrow | | at 17:00 tomorrow | At 5:00 p.m. tomorrow | | at 4:45pm | At 4:45 p.m. today (or tomorrow, if it's already past 4:45 p.m.) | | at 3:00 Dec 28,
2014 | At 3:00 a.m. on December 28, 2014 | After you enter one or more jobs, you can view the current list of scheduled jobs with the atq command: atq The output looks similar to the following: ``` 4 2014-12-28 03:00 a root 5 2014-10-26 21:57 a root 6 2014-10-26 16:45 a root ``` The first field on each line shows the job number — the same number that the at command displays when you submit the job. The next field shows the year, month, day, and time of execution. The last field shows the jobs pending in the a queue. If you want to cancel a job, use the atrm command to remove that job from the queue. When removing a job with the atrm command, refer to the job by its number, as follows: atrm 4 This command deletes job 4 scheduled for 3:00 a.m. December 28, 2014. When a job executes, the output is mailed to you. Type **mail** at a terminal window to read your mail and to view the output from your jobs. #### Scheduling recurring jobs Although at is good for running commands at a specific time, it's not useful for running a program automatically at repeated intervals. You have to use crontab to schedule such recurring jobs — for example, if you want to back up your files to tape at midnight every evening. You schedule recurring jobs by placing job information in a file with a specific format and submitting this file with the crontab command. The cron daemon — crond — checks the job information every minute and executes the recurring jobs at the specified times. Because the cron daemon processes recurring jobs, such jobs are also referred to as *cron jobs*. Any output from a cron job is mailed to the user who submits the job. (In the submitted job-information file, you can specify a different recipient for the mailed output.) Two configuration files control who can schedule cron jobs using crontab: - ♦ /etc/cron.allow contains the names of the users who may submit jobs using the crontab command. - ♦ /etc/cron.deny contains the names of users not allowed to submit jobs using the crontab command. If the /etc/cron.allow file exists, only users listed in this file can schedule cron jobs. If only the /etc/cron.deny file exists, users listed in this file can't schedule cron jobs. If neither file exists, the default Linux setup enables any user to submit cron jobs. Book V Chapter 1 Basic System Administration To submit a cron job, follow these steps: 1. Prepare a shell script (or an executable program in any programming language) that can perform the recurring task you want to perform. You can skip this step if you want to execute an existing program periodically. 2. Prepare a text file with information about the times when you want the shell script or program (from Step 1) to execute and then submit this file by using crontab. You can submit several recurring jobs with a single file. Each line with timing information about a job has a standard format, with six fields — the first five specify when the job runs, and the sixth and subsequent fields constitute the command that runs. For example, here's a line that executes the myjob shell script in a user's home directory at five minutes past midnight each day: ``` 5 0 * * * $HOME/myjob ``` Table 1-10 shows the meaning of the first five fields. *Note:* An asterisk (*) means all possible values for that field. Also, an entry in any of the first five fields can be a single number, a comma-separated list of numbers, a pair of numbers separated by a hyphen (indicating a range of numbers). or an asterisk. 3. Suppose the text file jobinfo (in the current directory) contains the job information. Submit this information to crontab with the following command: ``` crontab jobinfo ``` That's it! You're set with the cron job. From now on, the cron job runs at regular intervals (as specified in the job-information file), and you receive mail messages with the output from the job. To verify that the job is indeed scheduled, type the following command: ``` crontab -1 ``` The output of the crontab -1 command shows the cron jobs currently installed in your name. To remove your cron jobs, type crontab -r. If you log in as root, you can also set up, examine, and remove cron jobs for any user. To set up cron jobs for a user, use this command: ``` crontab u username filename ``` Here username is the user for whom you install the cron jobs, and filename is the file that contains information about the jobs. | Table 1-10 | Format for the Time of Execution in crontab Files | | | |-------------------|---|--|--| | Field
Number | Meaning of
Field | Acceptable Range of Values* | | | 1 | Minute | 0–59 | | | 2 | Hour of the day | 0–23 | | | 3 | Day of the
month | 0–31 | | | 4 | Month | 1–12 (1 means January, 2 means February, and
so on) or the names of months using the first
three letters — Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec | | | 5 | Day of the
week | 0–6 (0 means Sunday, 1 means Monday, and
so on) or the three-letter abbreviations of
weekdays — Sun, Mon, Tue, Wed, Thu, Fri, Sat | | ^{*} An asterisk in a field means all possible values for that field. For example, if an asterisk is in the third field, the job is executed every day. Use the following form of crontab command to view the cron jobs for a user: ``` crontab u username -1 ``` To remove a user's cron jobs, use the following command: ``` crontab -u username -r ``` **Note:** The cron daemon also executes the cron jobs listed in the systemwide cron job file /etc/crontab. Here's a typical /etc/crontab file from a Linux system (type **cat /etc/crontab** to view the file): ``` SHELL=/bin/bash PATH=/sbin:/bin:/usr/sbin:/usr/bin MAILTO=root HOME=/ # run-parts 01 * * * * root run-parts /etc/cron.hourly 02 4 * * root run-parts /etc/cron.daily 22 4 * * 0 root run-parts /etc/cron.weekly 42 4 1 * root run-parts /etc/cron.monthly ``` The first four lines set up several environment variables for the jobs listed in this file. The MAILTO environment variable specifies the user who receives the mail message with the output from the cron jobs in this file. Book V Chapter 1 Basic System Administration The line that begins with # is a comment line. The four lines following the run-parts comment execute the run-parts shell script (located in the /usr/bin directory) at various times with the name of a specific directory as argument. Each of the arguments to run-parts — /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and /etc/cron.monthly — are directories. Essentially, run-parts executes all scripts located in the directory that you provide as an argument. Table 1-11 lists the directories where you can find these scripts and when they execute. You have to look at the scripts in these directories to know what executes at these periodic intervals. | Table 1-11 | Script Directories for cron Jobs | | |-------------------|----------------------------------|--| | Directory Name |
Script Executes | | | /etc/cron.hourly | Every hour | | | /etc/cron.daily | Each day | | | /etc/cron.weekly | Weekly | | | /etc/cron.monthly | Once each month | | # Chapter 2: Managing Users and Groups #### In This Chapter - ✓ Managing a user account with a GUI user manager and commands - Understanding the password file - Managing your groups - **✓** Working in the user environment - Changing user and group ownerships of files and directories inux is a multiuser system, so it has many user accounts. Even if you're the only user on your system, there will be a whole host of system user accounts. These aren't for people. They're just for running specific programs; many servers require a unique username and group name. For example, the FTP server runs under the username ftp. User accounts can belong to one or more groups. Typically, each username has a corresponding private group name. By default, each user belongs to that corresponding private group. However, you can define other groups for the purpose of providing access to specific files and directories based on group membership. User and group ownerships of files are a way to make sure that only the right people (or the right process) can access the right files and directories. Managing the user and group accounts is a typical job for system administration. It's not hard to do this part of the job, given the tools that come with Linux, as you discover in this chapter. ## Adding User Accounts You get the chance to add user accounts when you boot your system for the first time after installing Linux. Typically (depending on your distribution), the root account is the only one that must be created/set up during installation. If you don't add other user accounts when you start the system for the first time, you can add new users later on, using a GUI user account manager or the useradd command. Creating other user accounts besides root is always a good idea. Even if you're the only user of the system, logging in as a less privileged user is good practice because that way you can't damage any important system files inadvertently. If necessary, you can type **su** - to log in as root and then perform any system administration tasks. # Managing user accounts by using a GUI user manager Most Linux distributions come with a GUI tool to manage user accounts. You can use that GUI tool to add new user accounts. The tool displays a list of current user accounts and has an Add button for adding new users. For the purposes of illustration, the YaST interface from OpenSUSE is shown in Figure 2-1. Figure 2-1: In SUSE. select the Security and Users category from the left side of the YaST Control Center, and then click the User and Group Management icon in the right side of the window. The basic steps, regardless of the specific GUI tool, are as follows: #### 1. Click the Add User button. A dialog box prompts you for information about the username and password variables for the new user account, as shown in Figure 2-2. Book V Chapter 2 > Managing User and Groups #### Figure 2-2: You can create the account by supplying the requested variables. #### 2. Enter the requested information. The GUI tool takes care of adding the new user account. 3. (Optional) Click one of the other tabs for the user (refer to Figure 2-2) to configure additional information. The Details tab (shown in Figure 2-3) allows you to override the defaults for the home directory, shell, and ID information. The Password Settings tab (shown in Figure 2-4) allows you to override the defaults for the password configuration. Plug-Ins can be used for a number of parameters, but are often used with *quota configuration* (such as size limits on files and the number of inodes that can be created): - Soft limits warn the user. - *Hard limits* stop the user. The tabs — other than User Data — are used to override the system defaults. If you want to change the system defaults, change the variables in the User and Group Administration interface. Figure 2-3: Use Details to configure settings other than the defined defaults for user accounts. Figure 2-4: Use Password Settings to configure settings other than the defined defaults for new user accounts. Book V Chapter 2 Notice that the tool you use for adding new users is called User and Group Management because there are two types of accounts it can configure: Users and Groups. Selecting Groups instead of Users allows you to add new groups to /etc/group, as shown in Figure 2-5. Figure 2-5: Groups can be created and managed similarly to users. To add a new user account, click the Add button and enter the information requested in the New Local User window. Fill in the requested information (including any add-ins such as for group qoutas) and then click the OK button. Notice that the newly added user account from Figure 2-2 now appears in the list of users in the Group Members pane and can be added — along with others — to the group. You can add more user or group accounts, if you like. When you finish, click the OK button to create any new accounts you've added; then you exit automatically. By default, YaST places all local users in a group named users. Sometimes you want a user to be in another group as well, so that user can access the files owned by that group. Adding a user to another group is easy. For example, to add the username kdulaney to the group called wheel, type the following command in a terminal window: To remove a user account, click the username in the list of user accounts and then click the Remove or the Delete button. #### Managing user accounts by using commands If you're working from a text console, you can create a new user account by using the useradd command. Follow these steps to add an account for a new user: 1. Log in as root. If you're not already logged in as root, type **su** - to become root. 2. Type the following useradd command with the -c option to create the account: /usr/sbin/useradd -c "Kristin Dulaney" kdulaney 3. Set the password by using the passwd command, as follows: passwd kdulaney You're prompted for the password twice. If you type a password that someone can easily guess, the passwd program will scold you and suggest that you use a more difficult password. The useradd command consults the following configuration files to obtain default information about various parameters for the new user account: - → /etc/default/useradd: Specifies the default shell (/bin/bash) and the default home directory location (/home). - ♦ /etc/login.defs: Provides system-wide defaults for automatic group and user IDs, as well as password-expiration parameters. - → /etc/skel: Contains the default files that useradd creates in the user's home directory. Examine these files with the cat or more commands to see what they contain. You can delete a user account by using the userdel command. Simply type /usr/sbin/userdel username at the command prompt where username is the name of the user you want to remove. To wipe out that user's home directory as well, type +userdel -r username. To modify any information in a user account, use the usermod command. For example, for user kdulaney to have root as the primary group, type the following: usermod -g root kdulaney To find out more about the useradd, userdel, and usermod commands, type **man useradd**, **man userdel**, or **man usermod**, respectively, in a terminal window. Book V Chapter 2 # Managing Use and Groups ## Understanding the letc/passwd File The /etc/passwd file is a list of all user accounts. It's a text file and any user can read it — no special privileges needed. Each line in /etc/passwd has seven fields, separated by colons (:). Here's a typical entry from the /etc/passwd file: kdulaney:x:1000:1000:Kristin Dulaney,,,,:/home/kdulaney:/bin/bash As the example shows, the format of each line in /etc/passwd looks like this: username:password:UID:GID:GECOS:homedir:shell Table 2-1 explains the meaning of the seven fields in each /etc/passwd entry. | Table 2-1 | Fields in the /etc/passwd File | | |------------|--|--| | This Field | Contains | | | username | An alphanumeric username, usually 8 characters long and unique. (Linux allows usernames to be longer than 8 characters, but some other operating systems do not.) | | | password | When present, a 13-character encrypted password. (An empty field means that no password is required to access the account. An \times means the password is stored in the /etc/shadow file, which is more secure.) | | | UID | A unique number that serves as the user identifier. (root has a UID of 0, and usually UIDs from 1 to 100 are reserved for non-human users such as servers; keeping the UID value to less than $32,767$ is best.) | | | GID | The default group ID of the group to which the user belongs (GID 0 is for group root, other groups are defined in /etc/group, and users can be, and usually are, in more than one group at a time). | | | GECOS | Optional personal information about the user. (The finger command uses this field; <i>GECOS</i> stands for General Electric Comprehensive Operating System, a long-forgotten operating system that's immortalized by the name of this field in /etc/passwd.) | | | Table 2-1 (continued) | | | |---|--|--| | This Field | This Field Contains | | | homedir | The name of the user's home directory. | | | shell The command interpreter (shell), such as bash (/bin/bash), which executes when this user logs in. | | | ## Managing Groups A group is something to which users belong. A group has a name and an identification number (ID). After a group is defined, users can belong
to one or more of these groups. You can find all the existing groups listed in /etc/group. For example, here's the line that defines the group named wheel: wheel:x:10:root,kdulaney As this example shows, each line in /etc/group has the following format, with four fields separated by colons: groupname:password:GID:membership Table 2-2 explains the meaning of the four fields in a group definition. | Table 2-2 | Meaning of Fields in /etc/group File | |------------|---| | Field Name | Meaning | | Groupname | The name of the group (for example, wheel) | | Password | The group password (an ${\bf x}$ means that the password is stored in the /etc/shadow file) | | GID | The numerical group ID (for example, 10) | | Membership | A comma-separated list of usernames that belong to this group (for example, root, kdulaney) | If you want to create a new group, you can simply use the groupadd command. For example, to add a new group called class with an automatically selected group ID, type the following command in a terminal window (you have to be logged in as root): groupadd class Then you can add users to this group with the usermod command. For example, to add the user kdulaney to the group named class, type the following commands: usermod -G class kdulaney If you want to remove a group, use the groupdel command. For example, to remove a group named class, type groupdel class #### Book V Chapter 2 Managing Users and Groups ## Other User and Group Administration Values One of the easiest ways to administer users and groups is to make certain you have the default values set to what you want them to be. The concept of *least privilege* should be followed and, as the name implies, the goal of it is to give users the minimal privileges needed to do their jobs and nothing more. Figure 2-6 shows the values that can be set for global password values. If you check the box Check New Passwords, then users will be prevented from using passwords that can be found in a dictionary, that are names, or use common words. The minimum password length can only be set if Check New Passwords is enabled; also consider the possible encryption methods seriously: - ◆ DES is the default encryption method of many distributions, and although it works in almost any environment, it limits passwords to eight characters or fewer. - ◆ MD5 lets you use longer passwords and is supported by all newer distributions, but can be a problem if you need to interact with older systems. - ◆ SHA-512 is usually the other choice offered and it a strong hash method that is not compatible with many systems. The default settings for new users, shown in Figure 2-7, can be set to increase security by choosing a different skeleton, a more secure shell, or a higher umask value. Lastly, the authentication settings (shown in Figure 2-8) allow you to configure the connection settings that will take effect by default. Figure 2-6: Global password variables can greatly increase system security. Figure 2-7: Default values for the new users can be changed. Book V Chapter 2 #### Figure 2-8: Default authentication setting values can ## Exploring the User Environment When you log in as a user, you get a set of environment variables that control many aspects of what you see and do on your Linux system. If you want to see your current environment, type the following command in a terminal window: env (By the way, the printenv command also displays the environment, but env is shorter.) The env command prints a long list of lines. The collection of lines is the current environment; each line defines an environment variable. For example, the env command displays this typical line: ``` HOSTNAME=localhost.localdomain ``` This line defines the environment variable <code>HOSTNAME</code> as <code>localhost.localdomain</code>. An *environment variable* is nothing more than a name associated with a string. For example, the environment variable named PATH is typically defined as follows for a normal user: ``` PATH=/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin ``` The string to the right of the equal sign (=) is the value of the PATH environment variable. By convention, the PATH environment variable is a sequence of directory names, each name separated from the others by a colon (:). Each environment variable has a specific purpose. For example, when the shell has to search for a file, it simply searches the directories listed in the PATH environment variable in the order of their appearance. Therefore, if two programs have the same name, the shell executes the one it finds first. In a fashion similar to the shell's use of the PATH environment variable, an editor such as vi uses the value of the TERM environment variable to figure out how to display the file you edit with vi. To see the current setting of TERM, type the following command at the shell prompt: ``` echo $TERM ``` If you type this command in a terminal window, the output is as follows: ``` xterm ``` To define an environment variable in bash, use the following syntax: ``` export NAME=Value ``` Here NAME denotes the name of the environment variable and Value is the string representing its value. Therefore you set TERM to the value xterm by using the following command: ``` export TERM=xterm ``` After you define an environment variable, you can change its value by simply specifying the new value with the syntax NAME=new-value. For example, to change the definition of TERM to vt100, type **TERM=vt100** at the shell prompt. With an environment variable such as PATH, typically you want to append a new directory name to the existing definition rather than define the PATH from scratch. For example, if you download and install the fictional XYZ 5 Development Kit, you have to add the location of the XYZ binaries to PATH. Here's how you accomplish that task: ``` export PATH=$PATH:/usr/xyz/xyz.5.0/bin ``` This command appends the string :/usr/xyz/xyz.5.0/bin to the current definition of the PATH environment variable. The net effect is to add /usr/xyz/xyz.5.0/bin to the list of directories in PATH. *Note:* You also can write this export command as follows: ``` export PATH=${PATH}:/usr/xyz/xyz.5.0/bin ``` After you type that command, you can access programs in the /usr/xyz/xyz.5.0/bin directory that the interpreter can execute. PATH and TERM are only two of a handful of common environment variables. Table 2-3 lists some of the environment variables for a typical Linux user. | Table 2-3 | Typical Environment Variables in Linux | |-------------------------|---| | Environment
Variable | Contents | | DISPLAY | The name of the display on which the X Window System displays output (typically set to : 0 . 0) | | HOME | Your home directory | | HOSTNAME | The host name of your system | | LOGNAME | Your login name | | MAIL | The location of your mail directory | | PATH | The list of directories in which the shell looks for programs | | SHELL | Your shell (SHELL=/bin/bash for bash) | | TERM | The type of terminal | Book V Chapter 2 Managing User and Groups ## Changing User and Group Ownership of Files In Linux, each file or directory has two types of owners: a user and a group. In other words, a user and group own each file and directory. The user and group ownerships can control who can access a file or directory. To view the owner of a file or directory, use the ls -1 command to see the detailed listing of a directory. For example, here's a typical file's information: ``` -rw-rw-r-- 1 kdulaney kdulaney 40909 Aug 16 20:37 composer.txt ``` In this example, the first set of characters shows the file's permission setting — who can read, write, or execute the file. The third and fourth fields (in this example, kdulaney kdulaney) indicate the user and group owner of the file. Each user has a private group that has the same name as the username. Thus most files appear to show the username twice when you list user and group ownership. As a system administrator, you may decide to change the group ownership of a file to a common group. For example, suppose you want to change the group ownership of the composer.txt file to the class group. To do that, log in as root and type the following command: ``` chgrp class composer.txt ``` This chgrp command changes the group ownership of ${\tt composer.txt}$ to class. You can use the chown command to change the user owner. The command has the following format: ``` chown username filename ``` For example, to change the user ownership of a file named sample.jpg to kdulaney, type ``` chown kdulaney sample.jpg ``` The chown command can change both the user and group owner at the same time. For example, to change the user owner to kdulaney and the group owner to class, type ``` chown kdulaney.class composer.txt ``` In other words, you simply append the group name to the username with a period in between, and then use that as the name of the owner. ## Chapter 3: Managing File Systems #### In This Chapter - ✓ Navigating the Linux file system - **✓** Sharing files with NFS - Backing up and restoring files - **✓** Mounting the NTFS file system - Accessing MS-DOS files file system refers to the organization of files and directories. As a system administrator, you have to perform certain operations to manage file systems on various storage media. For example, you have to know how to mount — add a file system on a storage medium by attaching it to the overall Linux file system. You also have to back up important data and restore files from a backup. Other file-system operations include sharing files with the Network File System (NFS) and accessing MS-DOS files. This chapter shows you how to perform all file-system management tasks. ## Exploring the Linux File System The files and directories in your PC store information in an organized manner,
just like paper filing systems. When you store information on paper, typically you put several pages in a folder and then store the folder in a file cabinet. If you have many folders, you probably have some sort of filing system. For example, you may label each folder's tab and then arrange them alphabetically in the file cabinet. You might have several file cabinets, each with lots of drawers, which, in turn, contain folders full of pages. Operating systems, such as Linux, organize information in your computer in a manner similar to your paper filing system. Linux uses a file system to organize all information in your computer. Of course, the storage medium isn't a metal file cabinet and paper. Instead, Linux stores information on devices such as hard drives, USB drives, and DVD drives. To draw an analogy between your computer's file system and a paper filing system, think of a disk drive as the file cabinet. The drawers in the file cabinet correspond to the directories in the file system. The folders in each drawer are also directories — because a directory in a computer file system can contain other directories. You can think of files as the pages inside the folder — and that's where the actual information is stored. Figure 3-1 illustrates the analogy between a file cabinet and the Linux file system. The Linux file system has a *hierarchical* structure — directories can contain other directories, which in turn contain individual files. Everything in your Linux system is organized in files and directories. To access and use documents and programs on your system, you have to be familiar with the file system. #### Understanding the file-system hierarchy The Linux file system is organized like a tree, with a root directory from which all other directories branch out. When you write a complete pathname, the root directory is represented by a single slash (/). Then there's a hierarchy of files and directories. Parts of the file system can be on different physical drives or in different hard drive partitions. Linux uses a standard directory hierarchy. Figure 3-2 shows some of the standard parts of the Linux file system. You can create new directories anywhere in this structure. Figure 3-2: The Linux file system uses a standard directory hierarchy similar to this one. Book V Chapter 3 > Nanaging Fil Systems Write the name of any file or directory by concatenating the names of directories that identify where that file or directory is and by using the forward slash (/) as a separator. For example, in Figure 3-2, the usr directory at the top level is written as /usr because the root directory (/) contains usr. On the other hand, the X11R6 directory is inside the usr directory, which is inside the root directory (/). Therefore the X11R6 directory is uniquely identified by the name /usr/X11R6. This type of full name is a *pathname* because the name identifies the path you take from the root directory to reach a file. Thus /usr/X11R6 is a pathname. The Filesystem Hierarchy Standard (FHS) specifies the organization of files and directories in Unix-like operating systems, such as Linux. FHS defines a standard set of directories and their intended use. The FHS, if faithfully adopted by all Linux distributions, should help improve the interoperability of applications, system administration tools, development tools, and scripts across all Linux distributions. FHS even helps the system documentation (as well as books like this one) because the same description of the file system applies to all Linux distributions. Version 2.3 of FHS was announced on January 29, 2004. FHS 2.3 is part of the Linux Standard Base version 3.x (LSB 3.0), which was released on July 1, 2005. The standard was updated with 3.1 on October 25, 2005, and 3.2 on January 28, 2008. LSB 3.x (see www.linuxbase.org) is a set of binary standards aimed at reducing variations among the Linux distributions and promoting portability of applications. As of this writing, the most current Base is 4.1, which came out in early 2011. To find out more about the Linux Standard Base, check out the home page at www.linuxfoundation.org/collaborate/workgroups/lsb. Each of the standard directories in the Linux file system has a specific purpose. Table 3-1, Table 3-2, and Table 3-3 summarize these directories. | Table 3-1 Standard Directories in Linux File System | | | |---|--|--| | Directory Used to Store | | | | /bin | Executable files for user commands (for use by all users) | | | /boot | Files needed by the boot loader to load the Linux kernel | | | /dev | Device files | | | /etc | Host-specific system configuration files | | | /home | User home directories | | | /lib | Shared libraries and kernel modules | | | /media | Mount point for removable media | | | /mnt | Mount point for a temporarily mounted file system | | | /opt | Add-on application software packages | | | /root | Home directory for the root user | | | /sbin | Utilities for system administration | | | /srv | Data for services (such as web and FTP) offered by this system | | | /tmp | Temporary files | | | | | | | Table 3-2 | The /usr Directory Hierarchy | |------------------|---| | Directory | Secondary Directory Hierarchy | | /usr/bin | Most user commands | | /usr/
include | Directory for <i>include files</i> — files that are inserted into source code of applications by using various directives — used in developing Linux applications | | /usr/lib | Libraries used by software packages and for programming | | /usr/
libexec | Libraries for applications | | /usr/
local | Any local software | | /usr/sbin | Nonessential system administrator utilities | | /usr/
share | Shared data that doesn't depend on the system architecture (whether the system is an Intel PC or a Sun SPARC workstation) | | /usr/src | Source code | | Table 3-3 | The /var Directory Hierarchy | |----------------|--| | Directory | Variable Data | | /var/
cache | Cached data for applications | | /var/lib | Information relating to the current state of applications | | /var/lock | Lock files to ensure that a resource is used by one application only | | /var/log | Log files organized into subdirectories | | /var/mail | User mailbox files | | /var/opt | Variable data for packages stored in the /opt directory | | /var/run | Data describing the system since it was booted | | /var/
spool | Data that's waiting for some kind of processing | | /var/tmp | Temporary files preserved between system reboots | | /var/yp | Network Information Service (NIS) database files | Book V Chapter 3 Systems #### Mounting a device on the file system The storage devices that you use in Linux contain Linux file systems. Each device has its own local file system consisting of a hierarchy of directories. Before you can access the files on a device, you have to attach the device's directory hierarchy to the tree that represents the overall Linux file system. *Mounting* is the operation you perform to cause the file system on a physical storage device (a hard drive partition or a CD-ROM) to appear as part of the Linux file system. Figure 3-3 illustrates the concept of mounting. Figure 3-3 shows each device with a name that begins with <code>/dev</code>. For example, <code>/dev/cdrom</code> is the first DVD/CD-ROM drive. Physical devices are mounted at specific mount points on the Linux file system. For example, the DVD/CD-ROM drive, <code>/dev/cdrom</code>, is mounted on <code>/media/cdrom</code> in the file system. After mounting the CD-ROM in this way, the Fedora directory on a CD-ROM or DVD-ROM appears as <code>/media/cdrom/Fedora</code> in the Linux file system. You can use the mount command to manually mount a device on the Linux file system at a specified directory. That directory is the *mount point*. For example, to mount the DVD/CD-ROM drive at the /media/cdrom directory, type the following command (after logging in as root): mount /dev/cdrom /media/cdrom The mount command reports an error if the DVD/CD-ROM device is mounted already or if no CD or DVD media is in the drive. Otherwise the mount operation succeeds, and you can access the contents of the DVD or CD through the /media/cdrom directory. You can use any directory as the mount point. If you mount a device on a nonempty directory, however, you can't access the files in that directory until you unmount the device by using the umount command. Therefore always use an empty directory as the mount point. To unmount a device when you no longer need it, use the umount command. For example, for a DVD/CD-ROM device with the device name /dev/cdrom, type the following command to unmount the device: umount /dev/cdrom The umount command succeeds as long as no one is using the DVD/CD-ROM. If you get an error when trying to unmount the DVD/CD-ROM, check to see if the current working directory is on the DVD or CD. If you're currently working in one of the DVD/CD-ROM's directories, that also qualifies as a use of the DVD/CD-ROM. Book V Chapter 3 Systems ### Examining the letc/fstab file The mount command has the following general format: mount device-name mount-point However, you can mount by specifying only the CD-ROM device name or the <code>mount-point</code> name, provided there's an entry in the <code>/etc/fstab</code> file for the CD-ROM mount point. That entry specifies the CD-ROM device name and the file-system type. That's why you can mount the CD-ROM with a shorter mount command. For example, in Debian, you can mount the CD-ROM by typing one of the following commands: ``` mount /dev/cdrom mount /media/cdrom ``` The /etc/fstab file is a configuration file — a text file containing
information that the mount and umount commands use. Each line in the /etc/fstab file provides information about a device and its mount point in the Linux file system. Essentially, the /etc/fstab file associates various mount points within the file system with specific devices, which enables the mount command to work from the command line with only the mount point or the device as argument. Here's a /etc/fstab file from a SUSE system. (The file has a similar format in other Linux distributions.) ``` /dev/hda7 /boot ext3 acl,user_xattr 1 2 /dev/hda6 /data1 auto noauto,user 0 0 /dev/hda9 /data2 auto noauto,user 0 0 /dev/hda9 /data3 auto noauto,user 0 0 /dev/hda5 /data4 auto noauto,user 0 0 /dev/hda5 /data4 auto noauto,user 0 0 /dev/hda2 /windows/C ntfs ro,users,gid=users,umask=0002,nls=utf8 0 0 /dev/hda8 swap swap pri=42 0 0 dev/hda8 swap swap pri=42 0 0 devpts /dev/pts devpts mode=0620,gid=5 0 0 proc /proc proc defaults 0 0 usbfs /proc/bus/usb usbfs noauto 0 0 sysfs /sys sysfs noauto 0 0 /dev/cdrecorder /media/cdrecorder subfs fs=cdfss,ro,procuid,nosuid,nodev,exec,ioc harset=utf8 0 0 ``` The first field on each line shows a device name, such as a hard drive partition. The second field is the mount point, and the third field indicates the type of file system on the device. You can ignore the last three fields for now. This /etc/fstab file shows that the /dev/hda8 device functions as a swap device for virtual memory, which is why both the mount point and the file-system type are set to swap. The Linux operating system uses the contents of the /etc/fstab file to mount various file systems automatically. During Linux startup, the init process executes a shell script that runs the mount -a command. That command reads the /etc/fstab file and mounts all listed file systems (except those with the noauto option). The third field on each line of /etc/fstab specifies the type of file system on that device, and the fourth field shows a comma-separated list of options that the mount command uses when mounting that device on the file system. Typically, you find the defaults option in this field. The defaults option implies — among other things — that the device mounts at boot time, that only the root user can mount the device, and that the device mounts for both reading and writing. If the options include noauto, the device doesn't mount automatically when the system boots. In Fedora, you often find the managed option in the fourth field of /etc/fstab entries. The managed option indicates that the line was added to the fstab file by the HAL (hardware abstraction layer) daemon, which runs the fstab-sync command to add entries in the /etc/fstab file for each removable drive that it detects. You typically find that the entries for DVD/CD-ROM drive(s) (/dev/hdc in most systems) have the managed option in the fourth field. ## Sharing Files with NFS Sharing files through the NFS is simple and involves two basic steps: - ◆ On the NFS server, export one or more directories by listing them in the /etc/exports file and by running the /usr/sbin/exportfs command. In addition, you must run the NFS server. - On each client system, use the mount command to mount the directories the server has exported. How you start the NFS server depends on the Linux distribution. If a GUI sysadmin tool is available, you can start the NFS server from the GUI tool. Otherwise, you can type a command in a terminal window to start the NFS server: - In Debian, you can type invoke-rc.d nfs-kernel-server start and invoke-rc.d nfs-common start to start the NFS server. - **♦** In Fedora, type **service nfs start**. - ◆ To start the NFS server in SUSE, you can use the YaST Control Center: From the main menu, choose the Kickoff Application Launcher YaST System System System Services (run level). - Doing so brings up a screen such as that shown in Figure 3-4. - ◆ In Xandros, you can start the NFS server from the Xandros Control Center (Main Menuç>Control Center) or by typing invoke-rc.d nfs-user-server start in a terminal window. The only problem in using NFS is that each client system must support it. Most PCs don't come with NFS — that means you have to buy NFS software separately if you want to share files by using NFS. If, however, all systems on your LAN run Linux (or other variants of Unix with built-in NFS support), using NFS makes sense. Figure 3-4: You can start NFS in openSUSE from YaST. NFS has security vulnerabilities. Therefore don't set up NFS on systems directly connected to the Internet. The upcoming section walks you through an NFS setup, using an example of two Linux PCs on a LAN. Book V Chapter 3 > Managing File Systems #### Exporting a file system with NFS To export a file system with NFS, start with the server system that *exports* — makes available to the client systems — the contents of a directory. On the server, you must run the NFS service and also designate one or more file systems to be exported to the client systems. You have to add an appropriate entry to the /etc/exports file. For example, suppose you want to export the /home directory and you want to enable the hostname LNBP75 to mount this file system for read and write operations. (You can use a host's IP address in place of the hostname.) You can do so by adding the following entry to the /etc/exports file: ``` /home LNBP75(rw) ``` If you use the IP address of a host, the entry might look like this: ``` /home 192.168.1.200(rw) ``` This specifies that 192.168.1.200 is the IP address of the host that's allowed full access to the /home directory. After adding the entry in the /etc/exports file, start the NFS server using a method appropriate for your Linux distribution. For example, in Fedora, log in as root and type the following command in a terminal window: ``` service nfs start ``` When the NFS service is up, the server side of NFS is ready. Now you can try to mount the exported file system from a client system and access the exported file system. If you ever make any changes to the exported file systems listed in the /etc/exports file, remember to restart the NFS service. For example, in Fedora, type service nfs restart in a terminal window. In Xandros, type invoke-rc.d nfs-user-server restart. #### Mounting an NFS file system To access an exported NFS file system on a client system, you have to mount that file system on a *mount point* — which is, in practical terms, nothing more than a local directory. For example, suppose you want to access the / home/public directory exported from the server named LNBP200 at the local directory /mnt/lnbp200 on the client system. To do so, follow these steps: 1. Log in as root and create the directory with the following command: mkdir /mnt/lnbp200 **2.** Type the following command to perform the mount operation: mount lnbp200:/home/public /mnt/lnbp200 If you know only the IP address of the server, replace the hostname (in this case, lnbp200) with the IP address. **3.** Change the directory to /mnt/lnbp200 with the command cd /mnt/lnbp200. Now you can view and access exported files from this directory. To confirm that the NFS file system is indeed mounted, log in as root on the client system and type **mount** in a terminal window. You see a line similar to the following about the NFS file system: lnbp200:/home/public on /mnt/lnbp200 type nfs (rw,addr=192.168.1.200) ## Backing Up and Restoring Files Backing up and restoring files is a crucial system administration task. If something happens to your system's hard drive, you have to rely on the backups to recover important files. The following discussion presents some backup strategies, describes several backup media, and explains how to back up and restore files by using the tape archiver (tar) program that comes with Linux. Also, you find out how to perform incremental and automatic backups on tapes. If you have a CD burner, you can back up files also by recording them on a CD-R. Consult Book II, Chapter 5, for information on what application you can use to burn a data CD. #### Selecting a backup strategy and media Your Linux system's hard drive contains everything you need to keep the system running — as well as other files (such as documents and databases) that keep your business running. You have to back up these files so you can recover quickly and bring the system back to normal in case the hard drive crashes. Typically, you have to follow a strict regimen of regular backups because you can never tell when the hard drive may fail or the file system may get corrupted. To implement such a regimen, first decide which files you want to back up, how often, and what backup storage media to use. This process is what is meant by selecting a backup strategy and backup media. Book V Chapter 3 Managing File Systems Your choice of backup strategy and backup media depends on your assessment of the risk of business disruption due to hard drive failure. Depending on how you use your Linux system, a disk failure may or may not have much effect on you. For example, if you use your Linux system as a learning tool (to find out more about Linux or programming), all you may need are backup copies of some system files required to configure Linux. In this case, your backup strategy can be to save important system configuration files on your preferred storage media every time you change any system configuration. On the other hand, if you use your Linux system as an office server that provides shared file storage for many users, the risk of business disruption due to disk failure is much higher. In this case, you have to back up all the files every week and back up any new or changed files every day. You can perform these backups in an automated manner (with the job-scheduling features described in Chapter 1 of this minibook). Also, you probably need a backup storage medium that can store many gigabytes of data. In other words, for high-risk situations, your backup strategy has to be more elaborate and requires
additional equipment (such as a high-capacity external hard drive). Your choice of backup media depends on the amount of data you have to back up. For a small amount of data (such as system configuration files), you can use USB flash drives as backup media. If your PC has an old Zip drive, you can use Zip disks as backup media; these are good for backing up a single-user directory. To back up entire servers, use an external hard drive (which could be attached to the computer or the network) or other storage device. When backing up files to these media, you have to refer to the backup device by name. You will find these devices under the /dev directory. #### Commercial backup utilities for Linux The next section explains how to back up and restore files using the tape archiver (tar) program that comes with Linux. Although you can manage backups with tar, a number of commercial backup utilities come with graphical user interfaces and other features to simplify backups. Here are some well-known commercial backup utilities for Linux: - ◆ BRU: A backup and restore utility from the TOLIS Group, Inc. (www.tolisgroup.com) - ◆ LONE-TAR: Tape backup software package from Lone Star Software Corp. (www.cactus.com) - ◆ Arkeia: Backup and recovery software for heterogeneous networks from Arkeia (www.arkeia.com) - ◆ CA ARCserve Backup for Linux: Data-protection technology for Linux systems from Computer Associates (http://www.arcserve.com) #### Using the tape archiver — tar You can use the tar command to archive files to a device, such as a hard drive or tape. The tar program creates an archive file that can contain other directories and files and (optionally) compress the archive for efficient storage. The archive is then written to a specified device or another file. Many software packages are distributed in the form of a compressed tar file. The command syntax of the tar program is as follows: tar options destination source Here options are usually specified by a sequence of single letters, with each letter specifying what tar does. The <code>destination</code> is the device name of the backup device. And <code>source</code> is a list of file or directory names denoting the files to back up. #### Backing up and restoring a single-volume archive Suppose you want to back up the contents of the /etc/X11 directory on a hard drive. Log in as root, and type the following command, where xxx represents your drive: tar zcvf /dev/xxx /etc/X11 The tar program displays a list of filenames as each file is copied to the compressed tar archive. In this case, the options are zcvf, the destination is /dev/xxx (the drive), and the source is the /etc/X11 directory (which implies all its subdirectories and their contents). You can use a similar tar command to back up files to a tape — simply replace the hard drive location with that of the tape device — such as /dev/st0 for a SCSI tape drive. Table 3-4 defines a few common tar options. | Table 3 | -4 Common tar Options | | |---------|---|--| | Option | Does the Following | | | С | Creates a new archive. | | | f | Specifies the name of the archive file or device on the next field in the command line. | | Book V Chapter 3 > Managing File Systems | Table 3 | Table 3-4 (continued) | | | |---------|---|--|--| | Option | Does the Following | | | | M | Specifies a multivolume archive. (The next section describes multivolume archives.) | | | | t | Lists the contents of the archive. | | | | v | Displays verbose messages. | | | | х | Extracts files from the archive. | | | | Z | Compresses the tar archive using gzip. | | | To view the contents of the tar archive you create on the drive, type the following command (replacing *xxx* with the drive device): ``` tar ztf /dev/xxx ``` You see a list of filenames (each begins with /etc/X11) indicating what's in the backup. In this tar command, the t option lists the contents of the tar archive. To extract the files from a tar backup, follow these steps while logged in as root: #### 1. Change the directory to /tmp by typing this command: This step is where you can practice extracting the files from the tar backup. For a real backup, change the directory to an appropriate location (typically, you type **cd** /). #### 2. Type the following command: ``` tar zxvf /dev/xxx ``` This tar command uses the x option to extract the files from the archive stored on the device (replace xxx with the drive). Now if you check the contents of the /tmp directory, you notice that the tar command creates an etc/X11 directory tree in /tmp and restores all the files from the tar archive into that directory. The tar command strips the leading / from the filenames in the archive and restores the files in the current directory. If you want to restore the /etc/X11 directory from the archive, use this command (substituting the device name for xxx): ``` tar zxvf /dev/xxx -C / ``` The -C does a cd to the directory specified (in this case, the root directory of /) before doing the tar; the / at the end of the command denotes the directory where you want to restore the backup files. You can use the tar command to create, view, and restore an archive. You can store the archive in a file or in any device you specify with a device name. #### Backing up and restoring a multivolume archive Sometimes the capacity of a single storage medium is less than the total storage space needed to store the archive. In this case, you can use the ${\tt M}$ option for a multivolume archive — meaning the archive can span multiple tapes or even floppies (if you happen to be using an older machine that still has them). Note, however, that you can't create a compressed, multivolume archive. That means you have to drop the ${\tt z}$ option. *Note:* The M tells tar to create a multivolume archive. The tar command prompts you for a second media when the first one is filled. Take out the first media, and insert another when you see the following prompt: Prepare volume #2 and hit return: When you press Enter, the tar program continues with the second media. For larger archives, the tar program continues to prompt for new media as needed. To restore from this multivolume archive, type cd /tmp to change the directory to /tmp. (I use the /tmp directory for illustrative purposes, but you have to use a real directory when you restore files from archive.) Then type (replacing xxx with the device you are using) tar xvfM /dev/xxx The tar program prompts you to feed the media as necessary. Use the du -s command to determine the amount of storage you need for archiving a directory. For example, type **du-s/etc** to see the total size of the /etc directory in kilobytes. Here's a typical output of that command: 35724 /etc The resulting output shows that the /etc directory requires at least 35,724 kilobytes of storage space to back up. Book V Chapter 3 > Managing File Systems #### Backing up on tapes Although backing up on tapes is as simple as using the right device name in the tar command, you do have to know some nuances of the tape device to use it well. When you use tar to back up to the device named /dev/st0 (the first SCSI tape drive), the tape device automatically rewinds the tape after the tar program finishes copying the archive to the tape. The /dev/st0 device is called a *rewinding tape device* because it rewinds tapes by default. If your tape can hold several gigabytes of data, you may want to write several tar archives — one after another — to the same tape (otherwise much of the tape may be left empty). If you plan to do so, your tape device can't rewind the tape after the tar program finishes. To help you with scenarios like this one, several Linux tape devices are nonrewinding. The nonrewinding SCSI tape device is called /dev/nst0. Use this device name if you want to write one archive after another on a tape. After each archive, the nonrewinding tape device writes an end-of-file (EOF) marker to separate one archive from the next. Use the mt command to control the tape — you can move from one marker to the next or rewind the tape. For example, after you finish writing several archives to a tape using the /dev/nst0 device name, you can force the tape to rewind with the following command: ``` mt -f /dev/nst0 rewind ``` After rewinding the tape, you can use the following command to extract files from the first archive to the current disk directory: ``` tar xvf /dev/nst0 ``` After that, you must move past the EOF marker to the next archive. To do so, use the following mt command: ``` mt -f /dev/nst0 fsf 1 ``` This positions the tape at the beginning of the next archive. Now use the tar xvf command again to read this archive. If you save multiple archives on a tape, you have to keep track of the archives yourself. The order of the archives can be hard to remember, so you may be better off simply saving one archive per tape. #### Performing incremental backups Suppose you use tar to back up your system's hard drive on a tape. Because such a full backup can take quite some time, you don't want to repeat this task every night. (Besides, only a small number of files may have changed during the day.) To locate the files that need backing up, you can use the find command to list all files that have changed in the past 24 hours: ``` find / -mtime -1 -type f -print ``` This command prints a list of files that have changed within the last day. The <code>-mtime -1</code> option means you want the files that were last modified less than one day ago. You can now combine this <code>find</code> command with the <code>tar</code> command to back up only those files that have changed within the last day: ``` tar cvf /dev/st0 'find / -mtime -1 -type f -print' ``` When you place a command between single back quotes, the shell executes that command and places the output at
that point in the command line. The result is that the tar program saves only the changed files in the archive. This process gives you an incremental backup of only the files that have changed since the previous day. #### Performing automated backups Chapter 1 of this minibook shows how to use crontab to set up recurring jobs (called *cron jobs*). The Linux system performs these tasks at regular intervals. Backing up your system is a good use of the crontab facility. Suppose your backup strategy is as follows: - ◆ Every Sunday at 1:15 a.m., your system backs up the entire hard drive on the tape. - ◆ Monday through Saturday, your system performs an incremental backup at 3:10 a.m. by saving only those files that have changed during the past 24 hours. To set up this automated backup schedule, log in as root and type the following lines in a file named backups (this example assumes that you are using a SCSI tape drive): ``` 15 1 * * 0 tar zcvf /dev/st0 / 10 3 * * 1-6 tar zcvf /dev/st0 'find / -mtime -1 -type f -print' ``` Next, submit this job schedule by using the following crontab command: ``` crontab backups ``` Now you're set for an automated backup. All you need to do is to place a new tape in the tape drive every day. Remember also to give each tape an appropriate label. Book V Chapter 3 > Managing File Systems ## Accessing a DOS or Windows File System If you're using a legacy machine that you just don't want to throw out and have a really old version of Microsoft Windows installed on your hard drive, you've probably already mounted the DOS or Windows partition under Linux. If not, you can easily mount DOS or Windows partitions in Linux. Mounting makes the DOS or Windows directory hierarchy appear as part of the Linux file system. #### Mounting a DOS or Windows disk partition To mount a DOS or Windows hard drive partition or storage device in Linux, use the mount command but include the option -t vfat to indicate the file-system type as DOS. For example, if your DOS partition happens to be the first partition on your IDE (Integrated Drive Electronics) drive and you want to mount it on /dosc, use the following mount command: mount -t vfat /dev/hda1 /dosc /DOS /WINDOWS The -t vfat part of the mount command specifies that the device you mount — /dev/hda1 — has an MS-DOS file system. Figure 3-5 illustrates the effect of this mount command. Figure 3-5: Here's how you mount a DOS partition on the /dosc directory. Figure 3-5 shows how directories in your DOS partition map to the Linux file system. What was the C:\DOS directory under DOS becomes /dosc/dos under Linux. Similarly, C:\WINDOWS now is /dosc/windows. You probably can see the pattern. To convert a DOS filename to Linux (when you mount the DOS partition on /dosc), perform the following steps: - 1. Change the DOS names to lowercase. - **2.** Change $C: \setminus \text{to } / \text{dosc}/.$ - 3. Change all backslashes (\setminus) to slashes (/). #### Mounting those ancient DOS floppy disks Just as you mount a DOS hard drive partition on the Linux file system, you can also mount a DOS floppy disk on a legacy machine. You must log in as root to mount a floppy, but you can set up your system so that any user can mount a DOS floppy disk. You also have to know the device name for the floppy drive. By default, Linux defines the following two generic floppy device names: - ♦ /dev/fd0 is the A drive (the first floppy drive) - ♦ /dev/fdl is the B drive (the second floppy drive, if you have one) You can use any empty directory in the file system as the mount point, but the Linux system comes with a directory, /media/floppy, specifically for mounting a floppy disk. To mount a DOS floppy disk on the /media/floppy directory, put the floppy in the drive and type the following command: ``` mount -t vfat /dev/fd0 /media/floppy ``` After you mount the floppy, you can copy files to and from the floppy by using the Linux copy command (cp). To copy the file gnome1.pcx from the current directory to the floppy, type the following: ``` cp gnome1.pcx /media/floppy ``` Similarly, to see the contents of the floppy disk, type the following: ``` ls /media/floppy ``` If you want to remove the floppy disk from the drive, first unmount the floppy drive. *Unmounting* removes the association between the floppy disk's file system and the mount point on the Linux file system. Use the umount command to unmount the floppy disk like this: ``` f you want to remove the flanny disk from the drive first unmount the fla ``` Book V Chapter 3 > Nanaging File Systems You can set up your Linux system so that any user can mount a DOS floppy. To enable any user to mount a DOS floppy in the A drive on the /a directory, for example, perform the following steps: - 1. Log in as root. - 2. Create the /a directory (the mount point) by typing the following command in a terminal window: mkdir /a 3. Edit the /etc/fstab file in a text editor (such as vi or emacs) by inserting the following line, and then save the file and quit the editor: ``` /dev/fd0 /a vfat noauto,user 0 0 ``` The first field in that line is the device name of the floppy drive (/dev/fd0); the second field is the mount directory (/a); the third field shows the type of file system (vfat). The user option (which appears next to noauto) enables all users to mount DOS floppy disks. - 4. Log out and then log back in as a normal user. - 5. To confirm that you can mount a DOS floppy as a normal user and not just as root, insert a DOS floppy in the A drive and type the following command: mount /a The mount operation succeeds, and you see a listing of the DOS floppy when you type the command **ls** /**a**. **6.** To unmount the DOS floppy, type umount /a. #### Mounting an NTFS partition Nowadays, most PCs come with Windows 7 or Windows 8 pre-installed on the hard drive. Both of these versions of Windows, as well as Windows XP, typically use the NT File System (NTFS). Linux supports read-only access to NTFS partitions, and many distributions come with the ntfs.ko kernel module, which is needed to access an NTFS partition. If you've installed Linux on a Windows system and want to access files on the NTFS partition but your distribution doesn't include the ntfs.ko module, you can build the kernel after enabling an NTFS module during the kernel configuration step. After rebuilding and booting from the new kernel, log in as root and type the following command to create a mount point for the NTFS partition. (In this case, I'm creating a mount point in the /mnt directory.) mkdir /mnt/windir Now you can mount the NTFS partition with the following command: mount /dev/hda2 /mnt/windir -t ntfs -r -o umask=0222 If necessary, replace /dev/hda2 with the device name for the NTFS partition on your system. On most PCs that come with Windows pre-installed, the NTFS partition is the second one (/dev/hda2) — the first partition (/dev/hda1) is usually a hidden partition used to hold files used for the Windows installation. Book V Chapter 3 > Managing File Systems # Chapter 4: Working with Samba and NFS #### In This Chapter - **✓** Sharing files with Network File System - ✓ Installing and configuring Samba - ✓ Setting up a Windows server using Samba f your local area network is like many others, it needs the capability to share files between systems that run Linux and other systems that don't. Thus, Linux includes two prominent file-sharing services: - Network File System (NFS): For sharing files with other Unix systems (or PCs with NFS client software) - ◆ Samba: For file sharing and print sharing with Windows systems This chapter describes how to share files using both NFS and Samba. ## Sharing Files with NFS Sharing files through NFS is simple and involves two basic steps: - ◆ On the Linux system that runs the NFS server, you export (share) one or more directories by listing them in the /etc/exports file and by running the exportfs command. In addition, you must start the NFS server. - ◆ On each client system, you use the mount command to mount the directories that your server has exported. The only problem in using NFS is that each client system must support it. Microsoft Windows doesn't come with NFS, so you have to buy NFS software separately if you want to share files by using NFS. However, using NFS if all systems on your LAN run Linux (or other variants of Unix with built-in NFS support) makes sense. NFS has security vulnerabilities. Therefore you should not set up NFS on systems directly connected to the Internet without using the RPCSEC_GSS security that comes with NFS version 4 (NFSv4). The Linux 2.6 kernel includes support for NFSv4, which is built on earlier versions of NFS. But unlike earlier versions, NFSv4 has stronger security and was designed to operate in an Internet environment. (RFC 3510 describes NFSv4; see www.ietf.org/rfc/rfc3530.txt.) NFSv4 uses the RPCSEC_GSS (GSS stands for Generic Security Services) protocol for security. You can continue to use the older user ID- and group ID-based authentication with NFSv4, but if you want to use RPCSEC_GSS you have to run three additional services: rpcsvcgassd on the server, rpsgssd on the client, and rpcidmapd on both the client and the server. For more information about NFSv4 implementation in Linux, visit www.citi.umich.edu/projects/nfsv4/linux. The next few sections walk you through NFS setup, using an example of two Linux PCs on a LAN. #### Exporting a file system with NFS Start with the server system that *exports* — makes available to the client systems — the contents of a directory. On the server, you must run the NFS service and also designate one or more file systems to export. To export a file system, you have to add an appropriate entry to the /etc/exports file. For example, suppose that you want to export the /home directory and you want to enable the host named LNBP75 to mount this file system for read and write operations. You can do so by adding the following entry to the /etc/exports file:
``` /home LNBP75(rw,sync) ``` If you want to give access to all hosts on a LAN such as 192.168.0.0, you could change this line to ``` /home 192.168.0.0/24(rw,sync) ``` Every line in the /etc/exports file has this general format: ``` directory host1(options) host2(options) . . . ``` The first field is the directory being shared via NFS, followed by one or more fields that specify which hosts can mount that directory remotely and a number of options in parentheses. You can specify the hosts with names or IP addresses, including ranges of addresses. The options in parentheses denote the kind of access each host is granted and how user and group IDs from the server are mapped to ID the client. (For example, if a file is owned by root on the server, what owner is that on the client?) Within the parentheses, commas separate the options. For example, if a host is allowed both read and write access — and all IDs are to be mapped to the anonymous user (by default, the anonymous user is named nobody) — the options look like this: (rw,all squash) Table 4-1 shows the options you can use in the /etc/exports file. You find two types of options: general options and user ID mapping options. | Table 4-1 | Options in /etc/exports | |----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| | Option | Description | | General Options | | | secure | Allows connections only from ports 1024 or lower (default) | | insecure | Allows connections from ports 1024 or higher | | ro | Allows read-only access (default) | | rw | Allows both read and write access | | sync | Performs write operations (writing information to the disk) when requested (by default) | | async | Performs write operations when the server is ready | | no_wdelay | Performs write operations immediately | | wdelay | Waits a bit to see whether related write requests arrive and then performs them together (by default) | | hide | Hides an exported directory that's a subdirectory of another exported directory (by default) | | no_hide | Causes a directory to not be hidden (opposite of hide) | | subtree_check | Performs subtree checking, which involves checking parent directories of an exported subdirectory whenever a file is accessed (by default) | | no_subtree_<br>check | Turns off subtree checking (opposite of subtree_check) | | insecure_locks | Allows insecure file locking | | User ID Mapping<br>Options | | | all_squash | Maps all user IDs and group IDs to the anonymous user on the client | | no_all_squash | Maps remote user and group IDs to similar IDs on the client (by default) | | root_squash | Maps remote root user to the anonymous user on the client (by default) | | | (continu | Book V Chapter 4 | Table 4-1 <i>(continued)</i> | | | |------------------------------|-------------------------------------------------------------------------------------------|--| | Option | Description | | | no_root_squash | Maps remote root user to the local root user | | | anonuid=UID | Sets the user ID of anonymous user to be used for the all_squash and root_squash options | | | anongid=GID | Sets the group ID of anonymous user to be used for the all_squash and root_squash options | | After adding the entry in the /etc/exports file, manually export the file system by typing the following command in a terminal window: exportfs -a This command exports all file systems defined in the /etc/exports file. Now you can start the NFS server processes. In Debian, start the NFS server by logging in as root and typing /etc/init.d/nfs-kernel-server start in a terminal window. In Fedora, type /etc/init.d/nfs start. In SUSE, type /etc/init.d/nfsserver start. If you want the NFS server to start when the system boots, type update-rc.d nfs-kernel-server defaults in Debian. In Fedora, type chkconfig --level 35 nfs on. In SUSE, type chkconfig --level 35 nfsserver on. In Xandros, type update-rc.d nfs-user-server defaults. When the NFS service is up, the server side of NFS is ready. Now you can try to mount the exported file system from a client system and then access the exported file system as needed. If you ever make any changes to the exported file systems listed in the /etc/exports file, remember to restart the NFS service. To restart a service, invoke the script in the /etc/init.d directory with restart as the argument (instead of the start argument that you use to start the service). #### Mounting an NFS file system To access an exported NFS file system on a client system, you have to mount that file system on a mount point. The *mount point* is nothing more than a local directory. For example, suppose that you want to access the /home directory exported from the server named LNBP200 at the local directory /mnt/lnbp200 on the client system. To do so, follow these steps: #### 1. Log in as root and create the directory with this command: mkdir /mnt/lnbp200 2. Type the following command to mount the directory from the remote system (LNBP200) on the local directory /mnt/lnbp200: mount lnbp200:/home /mnt/lnbp200 After completing these steps, you can then view and access exported files from the local directory /mnt/lnbp200. To confirm that the NFS file system is indeed mounted, log in as root on the client system and type **mount** in a terminal window. You see a line similar to the following about the NFS file system: lnbp200:/home/public on /mnt/lnbp200 type nfs (rw,addr=192.168.0.4) NFS supports two types of mount operations — hard and soft. By default, a mount is hard, which means that if the NFS server does not respond, the client keeps trying to access the server indefinitely until the server responds. You can soft mount an NFS volume by adding the -o soft option to the mount command. For a soft mount, the client returns an error if the NFS server fails to respond. # Setting Up a Windows Server Using Samba If you rely on Windows for file sharing and print sharing, you probably use Windows in your servers and clients. If so, you can still move to a Linux PC as your server without losing Windows file-sharing and print-sharing capabilities; you can set up Linux as a Windows server. When you install Linux from this book's companion DVD-ROM, you also get a chance to install the Samba software package, which performs that setup. All you have to do is select the Windows File Server package group during installation. After you install and configure Samba on your Linux PC, your client PCs — even if they're running an old Windows operating system or one of the more recent Windows versions — can access shared disks and printers on the Linux PC. To do so, they use the Common Internet File System (CIFS) protocol, the underlying protocol in Windows file and print sharing. With the Samba package installed, you can make your Linux PC a Windows client, which means that the Linux PC can access the disks and printers that a Windows server manages. At the same time, your Linux PC can be a client to other Windows systems on the network. The Samba software package has these major components: - /etc/samba/smb.conf: The Samba configuration file that the SMB server uses. - ♦ /etc/samba/smbusers: A Samba configuration file that shows the Samba usernames corresponding to usernames on the local Linux PC. Book V Chapter 4 Working with Samba and NFS - nmbd: The NetBIOS name server, which clients use to look up servers. (NetBIOS stands for Network Basic Input/Output System — an interface that applications use to communicate with network transports, such as TCP/IP.) - nmblookup: A command that returns the IP address of a Windows PC identified by its NetBIOS name. - ♦ smbadduser: A program that adds users to the SMB (Server Message Block) password file. - ♦ smbcacls: A program that manipulates Windows NT access control lists (ACLs) on shared files. - smbclient: The Windows client, which runs on Linux and allows Linux to access the files and printer on any Windows server. - smbcontrol: A program that sends messages to the smbd, nmbd, or winbindd processes. - ♦ smbd: The SMB server, which accepts connections from Windows clients and provides file-sharing and print-sharing services. - smbmount: A program that mounts a Samba share directory on a Linux PC. - ♦ smbpasswd: A program that changes the password for an SMB user. - ◆ smbprint: A script that enables printing on a printer on an SMB server. - smbstatus: A command that lists the current SMB connections for the local host. - ♦ smbtar: A program that backs up SMB shares directly to tape drives on the Linux system. - smbumount: A program that unmounts a currently mounted Samba share directory. - testparm: A program that ensures that the Samba configuration file is correct. - ♦ winbindd: A server that resolves names from Windows NT servers. The following sections describe how to configure and use Samba. # Installing Samba You may have already installed Samba when you installed Linux. You can check first, and if you don't find Samba on your system, you can easily install it. To see whether Samba is installed, type **dpkg -l samba*** in Debian, Ubuntu, and Xandros or type **rpm -q samba** in Fedora and SUSE. In Debian and Ubuntu, type **apt-get install samba** to install Samba. In Fedora, log in as root and type **yum install samba samba-swat**. This installs not only samba but also the web configuration interface, SWAT (Samba Web Administration Tool). In SUSE, click Software Management in the YaST Control Center's Software category. Then use YaST's search facility to look for samba, select the relevant packages, and install them. As for Xandros, you get Samba when you install Xandros. After installing the Samba software, you have to configure Samba before you can use it. Book V Chapter 4 > Working with samba and NFS # Configuring Samba To set up the Windows file-sharing and print-sharing services, you can either edit the configuration file manually or use a GUI tool. Using the
GUI tool is much easier than editing a configuration file. Fedora and SUSE come with GUI tools for configuring the Samba server. In Fedora, choose System Settings Advanced Samba from the KDE desktop to open the Samba Server Configuration window. Enter a valid username and password at the prompt, and the configuration interface that follows lets you create and edit entries in the configuration file /etc/samba/smb.conf. In SUSE, you can configure Samba through the YaST Control Center — choose System-Control Center (YaST) from the main menu. Click Network Services on the left side of the window and then click Samba Server on the right side of the window. In the window that appears, select a workgroup name (YaST displays the name of any existing Windows workgroup on your LAN) and click Next. Then you can select the server type, enable the server, and select what you want to share. After you exit the Samba server configuration utility, YaST stores the Samba settings in configuration files in the /etc/samba directory. After configuring Samba, type the following command in a terminal window to verify that the Samba configuration file is okay: testparm If the command says that it loaded the files okay, you're all set to go. The testparm command also displays the contents of the Samba configuration file. Samba uses the /etc/samba/smb.conf file as its configuration file. This is a text file with a syntax similar to that of a Microsoft Windows 3.1 INI file. You can edit that file in any text editor on your Linux system. Like the old Windows INI files, the /etc/samba/smb.conf file consists of sections, with a list of parameters in each section. Each section of the smb.conf file begins with the name of the section in brackets. The section continues until the next section begins or until the file ends. Each line uses the name = value syntax to specify the value of a parameter. As in Windows INI files, # **Discovering more about Samba** This chapter is only an introduction to Samba. To find out more about Samba, you can consult the following resources: - ✓ To view Samba documentation online, visit www.samba.org/samba/docs/ man/Samba-HOWTO-Collection. - Using Samba, 3rd Edition, by Jay Ts, Robert Eckstein, and David Collier-Brown (O'Reilly & Associates, 2007) You should also visit www.samba.org to keep up with the latest news on Samba development. This site also has links to resources for learning Samba. comment lines begin with a semicolon (;). In the /etc/samba/smb.conf file, comments may also begin with a hash mark (#). To start the Samba services automatically when the system reboots, type **update-rc.d samba defaults** in Debian, Ubuntu, and Xandros or type **chkconfig - level 35 smb on** in Fedora and SUSE. To start Samba immediately, type **/etc/init.d/smb start** in Fedora and SUSE or type **/etc/init.d/samba start** in Debian, Ubuntu, and Xandros. # Trying out Samba You can now access the Samba server on the Linux system from one of the Windows systems on the LAN. Double-click the Network Neighborhood icon on the Windows 95/98/ME desktop. On Windows XP, choose Start-∴ My Network Places and then click View Workgroup Computers. All the computers on the same workgroup are shown. In Windows, choose Start-∴ Computer-∴ Network. When you see the Samba server, you can open it by double-clicking the icon. After you enter your Samba username and password, you can access the folders and printers (if any) on the Samba share. You can use the smbclient program to access shared directories and printers on Windows systems on the LAN and to ensure that your Linux Samba server is working. One quick way to check is to type **smbclient -L** in a terminal window to view the list of services on the Linux Samba server itself. # Book VI Security # Contents at a Glance | Chapter 1: Introducing Linux Security | | |----------------------------------------------------|-----| | Why Worry about Security? | 383 | | Establishing a Security Framework | 384 | | Securing Linux | | | Delving into Computer Security Terminology & Tools | | | Keeping Up with Security News and Updates | | | Chapter 2: Securing Linux | | | Securing Passwords | | | Protecting Files and Directories | | | Encrypting and Signing Files with GnuPG | | | Monitoring System Security | | | Securing Internet Services | | | Using Secure Shell (SSH) for Remote Logins | | | Setting Up Simple Firewalls | | | Security Files to Be Aware Of | | | Chapter 3: Computer Security Audits and | | | Vulnerability Testing Types | | | Understanding Security Audits | 429 | | Implementing a Security Test Methodology | | | Vulnerability Testing Types | | | Exploring Security Testing Tools | | # Chapter 1: Introducing Linux Security #### In This Chapter - **✓** Establishing a security policy and framework - Understanding host security issues - Understanding network security issues - ✓ Translating computer security terminology - Keeping up with security news and updates his chapter explains why you need to worry about security — and offers a high-level view of how to get a handle on security. The idea of an overall security framework is explained and the two key aspects of security — host security and network security — are discussed. This chapter ends by introducing you to the terminology used in discussing computer security. According to the weighting, 15 percent of the questions on the LX0-102 exam fall under the Security domain. This number should be viewed as being very conservative since so much of administration involves security. You'll find topics related to it in domains such as Administrative Tasks, Essential System Services, Networking Fundamentals, and so on. Because of that, you'll find a lot of security-relevant information in the three chapters of Book 6 and in other chapters as well. # Why Worry about Security? In today's networked world, you have to worry about your Linux system's security. For a standalone system or a system used in an isolated local area network (LAN), you have to focus on protecting the system from the users, and the users from one another. In other words, you don't want a user to modify or delete system files, whether intentionally or unintentionally — and you don't want a user destroying another user's files (or their own, if you can prevent it). Since the odds are good that your Linux system is connected to the Internet, you have to secure the system from unwanted accesses over the Internet. These intruders — or *crackers*, as they're commonly known — typically impersonate a user, steal or destroy information, and even deny you access to your own system — known as a *Denial of Service (DoS)*, or *Distributed Denial of Service (DDoS)*, attack. By its very nature, an Internet connection makes your system accessible to any other system on the Internet. After all, the Internet connects a huge number of networks across the globe. In fact, the client/server architecture of Internet services, such as HTTP (web) and FTP, rely on the wide-open network access the Internet provides. Unfortunately, the easy accessibility to Internet services running on your system also means that anyone on the Net can easily access your system. If you operate an Internet host that provides information to others, you certainly want everyone to access your system's Internet services, such as FTP and web servers. However, these servers often have vulnerabilities that crackers may exploit to harm your system. You need to know about the potential security risks of Internet services — and the precautions you can take to minimize the risk of someone exploiting the weaknesses of your FTP or web server. You also want to protect your company's internal network from outsiders, even though your goal is to provide information to the outside world through your web or FTP server. You can protect your internal network by setting up an Internet firewall — a controlled-access point to the internal network and placing the web and FTP servers on a host outside the firewall. # Establishing a Security Framework The first step in securing your Linux system is to set up a security policy a set of guidelines that state what you enable users (as well as visitors over the Internet) to do on your Linux system. The level of security you establish depends on how you use the Linux system — and on how much is at risk if someone gains unauthorized access to your system. If you're a system administrator for one or more Linux systems at an organization, you probably want to involve company management, as well as the users, in setting up the security policy. Obviously, you can't create a draconian policy that blocks all access. (That would prevent anyone from effectively working on the system.) On the other hand, if the users are creating or using data valuable to the organization, you have to set up a policy that protects the data from disclosure to outsiders. In other words, the security policy should strike a balance between the users' needs and the need to protect the system. For a standalone Linux system or a home system that you occasionally connect to the Internet, the security policy can be just a listing of the Internet services that you want to run on the system and the user accounts that you plan to set up on the system. For any larger organization, you probably have one or more Linux systems on a LAN connected to the Internet — preferably through a firewall. (To reiterate, a firewall is a device that controls the flow of Internet Protocol — IP — packets between the LAN and the Internet.) In such cases, thinking of computer security systematically — across the entire organization — is best. Figure 1-1 shows the key elements of an organizationwide framework for computer security. The security framework outlined in Figure 1-1 focuses on - ◆ Determining the business requirements for security - ♦ Performing risk assessments - ♦ Establishing a security policy - → Implementing a cybersecurity solution that includes people,
process, and technology to mitigate identified security risks - ◆ Continuously monitoring and managing security The following sections discuss some of the key elements of the security framework. ### Determining business requirements for security The business requirements for security identify the computer resources and information you have to protect (including any requirements imposed by applicable laws, such as the requirement to protect the privacy of some types of data). Typical security requirements may include items such as the following: - ◆ Enabling access to information by authorized users - Implementing business rules that specify who has access to what information - ◆ Employing a strong user-authentication system - ◆ Denying execution to malicious or destructive actions on data Book VI Chapter 1 ntroducing Linux Security - ◆ Protecting data from end to end as it moves across networks - Implementing all security and privacy requirements that applicable laws impose # Performing risk analysis Risk analysis is all about identifying and assessing risks — potential events that can harm your Linux system. The analysis involves determining the following and performing some analysis to establish the priority for handling the risks: - **♦ Threats:** What you're protecting against - Vulnerabilities: Weaknesses that may be exploited by threats (these are the risks) - ◆ **Probability:** The likelihood that a threat will exploit the vulnerability - **◆ Impact:** The effect of exploiting a specific vulnerability - ◆ Mitigation: What to do to reduce vulnerabilities #### Typical threats Some typical threats to your Linux system include the following: - ◆ Denial of Service: The computer and network are tied up so legitimate users can't make use of the systems. For businesses, Denial of Service (DoS) can mean a loss of revenue. Since bringing a system to its knees with a single computer attack is a bit of a challenge these days, the more common tactic is to point a number of computers at a single site and let them do the dirty work. While the purpose and result are the same as ever, this ganging up is referred to as Distributed Denial of Service (DDoS) attack because more than one computer is attacking the host. - ◆ Unauthorized access: Use of the computer and network by someone who isn't an authorized user. The unauthorized user can steal information or maliciously corrupt or destroy data. Some businesses may be hurt by the negative publicity resulting from the mere act of an unauthorized user gaining access to the system, even if the data shows no sign of explicit damage. - ◆ Disclosure of information to the public: The unauthorized release of information to the public. For example, the disclosure of a password file enables potential attackers to figure out username and password combinations for accessing a system. Exposure of other sensitive information, such as financial and medical data, may be a potential liability for a business. #### Typical vulnerabilities The threats to your system and network come from exploitation of vulnerabilities in your organization's resources — both computer and people. Some common vulnerabilities follow: - ◆ People's foibles (divulging passwords, losing security cards, and so on) - ♦ Internal network connections (routers, switches) - ◆ Interconnection points (gateways routers and firewalls between the Internet and the internal network) - ◆ Third-party network providers (ISPs, long-distance carriers) with looser security - ◆ Operating system security holes (potential holes in Internet servers, such as those associated with sendmail, named, and bind) - ◆ Application security holes (known weaknesses in specific applications) #### The 1-2-3 of risk analysis (probability and effect) To perform risk analysis, assign a numeric value to the probability and effect of each potential vulnerability. To develop a workable risk analysis, do the following for each vulnerability or risk: - 1. Assign subjective ratings of low, medium, and high to the probability. As the ratings suggest, low probability means a lesser chance that the vulnerability will be exploited; high probability means a greater chance. - **2.** Assign similar ratings to the effect. What you consider the effect is up to you. If the exploitation of a vulnerability will affect your business greatly, assign it a high effect rating. - **3.** Assign a numeric value to the three levels low = 1, medium = 2, and high = 3 for both probability and effect. - **4.** Multiply the probability by the effect you can think of this product as the *risk level*. Then make a decision to develop protections for vulnerabilities that exceed a specific threshold for the product of probability and effect. For example, you may choose to handle all vulnerabilities that have a probability-times-effect value greater than 6. If you want to characterize the probability and effect with finer gradations, use a scale of 1 through 5 (for example) instead of 1 through 3, and follow the same steps as before. # Establishing a security policy Using risk analysis and any business requirements that you may have to address (regardless of risk level) as a foundation, you can craft a security policy for the organization. Such a security policy typically addresses high-level objectives such as ensuring the confidentiality, integrity, and availability of data and systems. Book VI Chapter 1 > Introducing Linux Security The security policy typically addresses the following areas: - ◆ Authentication: What method is used to ensure that a user is the real user? Who gets access to the system? What is the minimum length and complexity of passwords? How often do users change passwords? How long can a user be idle before that user is logged out automatically? - ◆ Authorization: What can different classes of users do on the system? Who can have the root password? - ◆ Data protection: What data must be protected? Who has access to the data? Is encryption necessary for some data? - ◆ Internet access: What are the restrictions on users (from the LAN) accessing the Internet? What Internet services (such as web, Internet Relay Chat, and so on) can users access? Are incoming e-mails and attachments scanned for viruses? Is there a network firewall? Are virtual private networks (VPNs) used to connect private networks across the Internet? - ◆ Internet services: What Internet services are allowed on each Linux system? Are there any file servers, mail servers, or web servers? What services run on each type of server? What services, if any, run on Linux systems used as desktop workstations? - ◆ Security audits: Who tests whether the security is adequate? How often is the security tested? How are problems found during security testing handled? - ◆ Incident handling: What are the procedures for handling any computer security incidents? Who must be informed? What information must be gathered to help with the investigation of incidents? - ◆ Responsibilities: Who is responsible for maintaining security? Who monitors log files and audit trails for signs of unauthorized access? Who maintains the security policy? # Implementing security solutions (mitigation) After you analyze the risks — vulnerabilities — and develop a security policy, you have to select the *mitigation approach*: how to protect against specific vulnerabilities. This is where you develop an overall security solution based on security policy, business requirements, and available technology — a solution that makes use of people, process, and technology and includes the following: - ◆ Services (authentication, access control, encryption) - ♦ Mechanisms (username and password, firewalls) - ♦ Objects (hardware, software) Because it's impossible to protect computer systems from all attacks, solutions identified through the risk management process must support three integral concepts of a holistic security program: - ◆ Protection: Provides countermeasures such as policies, procedures, and technical solutions to defend against attacks on the assets being protected. - ◆ **Detection:** Monitors for potential breakdowns in the protective measures that could result in security breaches. - ◆ **Reaction** or **Response:** Responds to detected breaches to thwart attacks before damage occurs; often requires human involvement. Because absolute protection from attacks is impossible to achieve, a security program that doesn't incorporate detection and reaction is incomplete. # Managing security In addition to implementing security solutions, you have to install security management that continually monitors, detects, and responds to any security incidents. The combination of the risk analysis, security policy, security solutions, and security management provides the overall security framework. Such a framework helps establish a common level of understanding of security concerns — and a common basis for the design and implementation of security solutions. # Securing Linux After you define a security policy, you can proceed to secure the system according to the policy. The exact steps depend on what you want to do with the system, whether the system is a server or workstation, and how many users must access the system. To secure the Linux system, you have to handle two broad categories of security issues: - ◆ Host-security issues: These issues relate to securing the operating system and the files and directories on the system. - Network-security issues: These issues refer to the threat of attacks over the network connection. If your host is connecting to a large network, Directory Services can become a significant issue. Directory Services security is outside the scope of this book, but you can find a number of sources addressing the issue with a Google search. Book VI Chapter 1 > Introducing Linux Security #### Understanding the host-security issues Here are some high-level guidelines to address host security. (I cover some of these topics in detail in
Chapter 2 of this minibook.) - ♦ When installing Linux, select only the package groups that you need for your system. Don't install unnecessary software. For example, if your system is used as a workstation, you don't have to install most of the servers (web server, news server, and so on). - ◆ Create initial user accounts and make sure that all passwords are strong enough that password-cracking programs can't guess them. Linux includes tools to enforce strong passwords. - ◆ Set file ownerships and permissions to protect important files and directories. - ◆ If mandatory access-control capabilities are available, enable them. Support for this feature has been incorporated, through Security Enhanced Linux (SELinux), since kernel 2.6. - ◆ Use the GNU Privacy Guard (GnuPG) to encrypt or decrypt files with sensitive information and to authenticate files that you download from the Internet. GnuPG comes with Linux, and you can use the gpg command to perform tasks such as encrypting or decrypting a file and digitally signing a file. (See Chapter 2 of this minibook for an explanation of digital signatures.) - ♦ Use file-integrity checking tools, such as Tripwire, to monitor any changes to crucial system files and directories. Visit www.tripwire.com for the commercial version. - ◆ Periodically, check various log files for signs of any break-ins or attempted break-ins. These log files are in the /var/log directory of your system. - ◆ Install security updates as soon as they are available and tested. These security updates fix known vulnerabilities in Linux. Be sure to test the update on nonproduction machines before rolling it out to your production servers. #### Understanding network-security issues The issue of security comes up as soon as you connect your organization's internal network to the Internet. You need to think of security even if you connect a single computer to the Internet, but security concerns are more pressing when an entire internal network is opened to the world. If you're an experienced system administrator, you already know that the cost of managing an Internet presence doesn't worry corporate management; their main concern is security. To get your management's backing for the website, you have to lay out a plan to keep the corporate network secure from intruders. You may think that you can avoid jeopardizing the internal network by connecting only external servers, such as web and FTP servers, to the Internet. However, employing this simplistic approach isn't wise. It's like deciding not to drive because you may have an accident. Not having a network connection between your web server and your internal network also has the following drawbacks: - ◆ You can't use network file transfers, such as FTP, to copy documents and data from your internal network to the web server. - ♦ Users on the internal network can't access the corporate web server. - ◆ Users on the internal network don't have access to web servers on the Internet. Such a restriction makes a valuable resource — the web — inaccessible to the users in your organization. A practical solution to this problem is to set up an Internet firewall and to put the web server on a highly secured host outside the firewall. In addition to using a firewall, here are some other steps to take to address network security. (I explain these further in Chapter 2 of this minibook.) - ◆ Enable only those Internet services you need on a system. In particular, don't enable services that aren't properly configured. - ♦ Use Secure Shell (ssh) for remote logins. Don't use the r commands, such as rlogin and rsh. - ◆ Secure any Internet services, such as FTP or TELNET, that you want to run on your system. You can use the *TCP wrapper* access-control files /etc/hosts.allow and /etc/hosts.deny to secure some of these services. (See Chapter 3 of this minibook for more on the TCP wrapper.) - ◆ Promptly fix any known vulnerabilities of Internet services that you choose to run. Typically, you can download and install the latest security updates from your Linux distribution's online update sites. # Delving into Computer Security Terminology and Tools Computer books, magazine articles, and experts on computer security use a number of terms that you need to know in order to understand discussions about computer security (and to communicate effectively with security vendors). Table 1-1 describes some of the commonly used computer security terms. If you're taking the LX0-102 exam, port scanning and setuid are important. Book VI Chapter 1 > Introducing Linux Security | Table 1-1 | Common Computer Security Terminology | |---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Term | Description | | Application gateway | A proxy service that acts as a gateway for application-level protocols, such as FTP, HTTP, NNTP, and SSH. | | Authentication | The process of confirming that a user is indeed who he or she claims to be. The typical authentication method is a challenge-response method wherein the user enters a username and secret password to confirm his or her identity. | | Backdoor | A security weakness that a cracker places on a host to bypass security features. | | Bastion host | A highly secured computer that serves as an organization's main point of presence on the Internet. A bastion host typically resides on the perimeter network, but a <i>dual-homed host</i> (with one network interface connected to the Internet and the other to the internal network) is also a bastion host. | | Buffer overflow | A security flaw in a program that enables a cracker to send an excessive amount of data to that program and to overwrite parts of the running program with code in the data being sent. The result is that the cracker can execute arbitrary code on the system and possibly gain access to the system as a privileged user. The new exec-shield feature of the Linux kernel protects against buffer overflows. | | Certificate | An electronic document that identifies an entity (such as an individual, an organization, or a computer) and associates a public key with that identity. A certificate contains the certificate holder's name, a serial number, an expiration date, a copy of the certificate holder's public key, and the digital signature of the certificate authority so a recipient can verify that the certificate is real. | | Certificate authority (CA | An organization that validates identities and issues certificates. | | Confidentiality | Of data, a state of being accessible to no one but authorized users (usually achieved by encryption). | | Cracker | A person who breaks into (or attempts to break into) a host, often with malicious intent. | | Decryption | The process of transforming encrypted information into its original, intelligible form. | | Term | Description | |-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Denial of Service (DoS) | An attack that uses so many of the resources on your computer and network that legitimate users can't access and use the system. From a single source, the attack overwhelms the target computer with messages and blocks legitimate traffic. It can prevent one system from being able to exchange data with other systems or prevent the system from using the Internet. | | Digital signature | A one-way MD5 (Message Digest algorithm 5) or SHA-1 (Secure Hash Algorithm-1) hash of a message encrypted with the private key of the message originator, used to verify the integrity of a message and ensure nonrepudiation. | | Distributed Denial of<br>Service (DDoS) | A variant of the Denial of Service attack that uses a coordinated attack from a distributed system of computers rather than a single source. It often makes use of worms to spread to — and take control of — multiple computers that can then attack the target. | | DMZ | Another name for the perimeter network. (DMZ originally stood for <i>demilitarized zone</i> , the buffer zone separating the warring North and South in Korea and Vietnam.) | | Dual-homed host | A computer with two network interfaces (think of each network as a home). | | Encryption | The process of transforming information so it's unintelligible to anyone but the intended recipient. The transformation is performed by a mathematical operation between a key and the information. | | Exploit tools | Publicly available and sophisticated tools that intruders of various skill levels can use to determine vulnerabilities and gain entry into targeted systems. | | Firewall | A controlled-access gateway between an organization's internal network and the Internet. A dualhomed host can be configured as a firewall. | | Hash | The result when a mathematical function converts a message into a fixed-size numeric value known as a <i>message digest</i> (or <i>hash</i> ). The MD5 algorithm, for example, produces a 128-bit message digest; SHA-1 generates a 160-bit message digest. The hash of a message is encrypted with the private key of the sender to produce the digital signature. | Book VI Chapter 1 > Introducing Linux Security (continued) | Term | Description | |---------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Host | A computer on a network that's configured to offer services to other computers on the network. | | Integrity | Of received data, a state of being the same as originally sent (that is, unaltered in transit). | | IP spoofing | An attack in which a cracker figures out the IP address of a trusted host and then sends packets that appear to come from the trusted host. The attacker can send packets but can't see responses. However, the attacker can predict the sequence of packets and essentially send commands that set up a backdoor for future break-ins. | | IPSec (IP Security<br>Protocol) | A security protocol for the network layer of the OSI networking model, designed to provide cryptographic security services for IP packets. IPSec provides encryption-based authentication, integrity, access control, and confidentiality. (For information on IPSec for Linux, visit www.ipsec-howto.org.) | | Logic bombs | A form of sabotage in which a programmer inserts code that causes the program to perform a destructive action when some triggering event occurs, such as terminating the programmer's employment. | | Nonrepudiation | A security feature that prevents the sender of data from being able to deny ever having sent the data. | | Packet | A collection of bytes, assembled according to a specific protocol, that serves as the basic unit of communication on a network. On TCP/IP networks, for example, the packet may be referred to as an <i>IP packet</i> or a <i>TCP/IP packet</i> . | | Packet filtering | Selective blocking of packets according to type of packet (as specified by the source and destination IP address or port). | | Perimeter network | A network between the Internet and the protected internal network. The perimeter network (also known as DMZ) is where the bastion host resides. | | Port scanning | A method of discovering which ports are open (in other words, which Internet services are enabled) on a system, performed by sending connection requests to the ports, one by one. This procedure is usually a precursor to further attacks; two portscanning tools to know are nmap, and netstat. | | Term | Description | |------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Proxy server | A server on the bastion host that enables internal clients to access external servers (and enables external clients to access servers inside the protected network). There are proxy servers for various Internet services, such as FTP and HTTP. | | Public key cryptography | An encryption method that uses a pair of keys — a private key and a public key — to encrypt and decrypt the information. Anything encrypted with the public key is decrypted only with the corresponding private key, and vice versa. | | Public Key Infrastructure<br>(PKI) | A set of standards and services that enables the use of public key cryptography and certificates in a networked environment. PKI facilitates tasks such as issuing, renewing, and revoking certificates, and generating and distributing public and private key pairs. | | Screening router | An Internet router that filters packets. | | setuid <b>program</b> | A program that runs with the permissions of the owner regardless of who runs the program. For example, if root owns a setuid/suid program, that program has root privileges regardless of who started the program. Crackers often exploit vulnerabilities in setuid programs to gain privileged access to a system. Similarly, sgid programs are used to run with the permissions of the group, regardless of who runs the program, and have their own similar vulnerabilities. | | Sniffer | Synonymous with <i>packet sniffer</i> — a program that intercepts routed data and examines each packet in search of specified information, such as passwords transmitted in clear text. | | Spyware | Any software that covertly gathers user information through the user's Internet connection and usually transmits that information in the background to someone else. Spyware can also gather information about e-mail addresses and even passwords and credit card numbers. Spyware is similar to a Trojan horse in that users are tricked into installing spyware when they install something else. | | Symmetric key encryption | An encryption method wherein the same key is used to encrypt and decrypt the information. | | Threat | An event or activity, deliberate or unintentional, with the potential for causing harm to a system or network. | Book VI Chapter 1 > Introducing Linux Security | Table 1-1 (continue | d) | |---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Term | Description | | Trojan horse | A program that masquerades as a benign program but is really a backdoor used for attacking a system. Attackers often install a collection of Trojan horse programs that enable the attacker to freely access the system with root privileges, yet hide that fact from the system administrator. Such collections of Trojan horse programs are called rootkits. | | Virus | A self-replicating program that spreads from one computer to another by attaching itself to other programs. | | Vulnerability | A flaw or weakness that may cause harm to a system or network. | | War-dialing | Simple programs that dial consecutive phone numbers looking for modems. | | War-driving | A method of gaining entry into wireless computer networks that uses a laptop, antennas, and a wireless network card and involves patrolling locations to gain unauthorized access. | | Worm | A self-replicating program that copies itself from one computer to another over a network. | Table 1-2 lists some of the commonly used computer security-related tools. Some of these you've seen before as they were discussed in other chapters where they related to the topics there; some others are new as they are relevant to security only. | Table 1-2 | Common Computer Security Tools | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tool | Description | | chage | With this command, you can modify the time between required password changes (both minimum and maximum number of days), the number of days of warning to be given that a change must be made, and expiration date. | | find | One of the most powerful all-around tools, this command allows you to find almost anything on machine if you can come up with the right syntax. Among the plethora of choices, you can find files created by a user, by a group, on a certain date, with certain permissions. | | Tool | Description | |---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | lsof | An acronym for list open files, this utility does just that. Depending on the parameters used, you can choose to see files opened by a process, or by a user. | | netstat | To see the status of the network, including network connections, routing tables and statistics per interface, this tool does it all. A similar command, ss, is intended to replace much of the functionality here. | | nmap | This tool is used to scan the network and essentially create a map of what is available on it. This capability makes it an ideal tool for port scanning and security auditing. | | passwd | A utility (not the file by the same name that holds user account information), with which users can change their passwords at the command line whenever necessary. Many users don't know this utility exists, so they change their passwords when required, through one of the graphical interface tools. | | su | To temporarily become another user, su can be used within the current user's session. Another shell is created; upon exiting from this second shell, the user goes back to the original session. This utility can be used to become the root user or any other user (provided the corresponding password is given). | | sudo | Instead of creating a new session (as su requires) to perform a job with elevated privileges, sudo enables the user to just run that task. | | ulimit | Resource limits on shells can be set or viewed using this command to keep one user from excessively hogging system resources. | | usermod | This utility can be thought of as an enhanced version of chage. Not only can it be used to set/change password expiration parameters, it can also be used to specify a default shell, lock/unlock an account, and so on. | #### Book VI Chapter 1 ntroducing Linu: Security # Keeping Up with Security News and Updates To keep up with the latest security alerts, you may want to visit one or both of
the following sites on a daily basis: - ◆ CERT Coordination Center (CERT/CC) at www.cert.org - ◆ United States Computer Emergency Readiness Team (US-CERT) at www.us-cert.gov If you prefer to receive regular security updates through e-mail, you can also sign up for (subscribe to) various mailing lists: - ◆ Focus on Linux: Fill out the form at www.securityfocus.com/archive to subscribe to this mailing list focused on Linux security issues. - ◆ US-CERT National Cyber Alert System: Follow the directions at www. us-cert.gov to subscribe to this mailing list. The Cyber Alert System features four categories of security information through its mailing lists: - Technical Cyber Security Alerts: Alerts that provide technical information about vulnerabilities in various common software products. - *Cyber Security Alerts*: Alerts sent when vulnerabilities affect the general public. Each alert outlines the steps and actions that non-technical home and corporate computer users can take to protect themselves from attacks. - Cyber Security Bulletins: Biweekly summaries of security issues and new vulnerabilities along with patches, workarounds, and other actions that users can take to help reduce risks. - Cyber Security Tips: Advice on common security issues for nontechnical computer users. Finally, check your distribution's website for updates that may fix any known security problems with that distribution: - ◆ In Debian and Ubuntu, you can update the system with the commands apt-get update followed by apt-get upgrade. - ◆ For Fedora, the website is http://fedoraproject.org. - ◆ In SUSE, use YaST Online Update to keep your system up to date. - ◆ In Xandros, obtain the latest updates from Xandros Networks. # Chapter 2: Securing Linux #### In This Chapter - **✓** Securing passwords on your Linux system - Protecting the system's files and directories - ✓ Using GnuPG to encrypt and sign files - ✓ Monitoring the security of your system - **✓** Hardening Internet services - ✓ Using Secure Shell for secure remote logins - ✓ Setting up simple firewalls and enabling packet filtering To secure your Linux system, you have to pay attention to both host security and network security. The distinction between the two types of security is somewhat arbitrary because securing the network involves securing the applications on the host that relate to what Internet services your system offers. This chapter first examines host security and then explains how you can secure network services (mostly by not offering unnecessary services), how you can use a firewall to stop unwanted network packets from reaching your network, and how to use Secure Shell for secure remote logins. *Host* is the techie term for your Linux system — especially when you use it to provide services on a network. But the term makes sense even when you think of the computer by itself; it's the host for everything that runs on it: the operating system and all applications. A key aspect of computer security is to secure the host. # Securing Passwords Historically, Unix passwords are stored in the /etc/passwd file, which any user can read. For example, a typical old-style /etc/passwd file entry for the root user looks like this: ``` root:t6Z7NWDK1K8sU:0:0:root:/root:/bin/bash ``` The fields are separated by colons (:), and the second field contains the password in encrypted form. To check whether a password is valid, the login program encrypts the plain-text password the user enters and compares the password with the contents of the /etc/passwd file. If they match, the user is allowed to log in. Password-cracking programs work just like the login program, except these programs choose one word at a time from a dictionary, encrypt the word, and compare the encrypted word with the encrypted passwords in the /etc/passwd file for a match. To crack the passwords, the intruder needs the /etc/passwd file. Often crackers use weaknesses of various Internet servers (such as mail and FTP) to get a copy of the /etc/passwd file. Passwords have become more secure in Linux due to several improvements, including shadow passwords and pluggable authentication modules, or PAMs (described in the next two sections). You can install shadow passwords or a PAM easily while you install Linux. During Linux installation, you typically get a chance to configure the authentication. If you enable MD5 security and enable shadow passwords, you automatically enable more secure passwords in Linux. # Shadow passwords Obviously, leaving passwords lying around where anyone can get at them — even if the passwords are encrypted — is bad security. So instead of storing passwords in the /etc/passwd file (which any user can read), Linux now stores them in a *shadow password file*,/etc/shadow. Only the superuser (root) can read this file. For example, here's the entry for root in the new-style /etc/passwd file: ``` root:x:0:0:root:/root:/bin/bash ``` In this case, note that the second field contains an x instead of an encrypted password. The x is the *shadow password;* the actual encrypted password is now stored in the /etc/shadow file, where the entry for root is like this: ``` root:$1$AAAni/yN$uESHbzUpy9Cgfoo1Bf0tS0:11077:0:99999:7:-1:-1:134540356 ``` The format of the /etc/shadow entries with colon-separated fields resembles the entries in the /etc/passwd file, but the meanings of most of the fields differ. The first field is still the username, and the second one is the encrypted password. The remaining fields in each /etc/shadow entry control when the password expires. You don't have to interpret or change these entries in the /etc/shadow file. Instead, use the chage command to change the password expiration information. For starters, you can check a user's password expiration information by using the chage command with the -l option, as follows. (In such a case, you have to be logged in as root.) ``` chage -1 root ``` This command displays expiration information, including how long the password lasts and how often you can change the password. If you want to ensure that the user is forced to change a password at regular intervals, you can use the -M option to set the maximum number of days that a password stays valid. For example, to make sure that user kdulaney is prompted to change the password in 90 days, log in as root and type the following command: chage -M 90 kdulaney You can use the command for each user account to ensure that all passwords expire when appropriate and that all users must choose new passwords. #### Pluggable authentication modules (PAMs) In addition to improving the password file's security by using shadow passwords, Linux also improves the encryption of the passwords stored in the $/\texttt{etc/shadow} \text{ file by using the MD5 message-digest algorithm described in RFC 1321 (www.ietf.org/rfc/rfc1321.txt or www.cse.ohio-state.edu/cgi-bin/rfc/rfc1321.html). MD5 reduces a message of any length to a 128-bit message digest (or$ *fingerprint*) of a document so that you can digitally sign it by encrypting it with your private key. MD5 works quite well for password encryption, too. Another advantage of MD5 over older-style password encryption is that the older passwords were limited to a maximum of eight characters; new passwords (encrypted with MD5) can be much longer. Longer passwords are harder to guess, even if the /etc/shadow file falls into the wrong hands. You can tell that MD5 encryption is in effect in the /etc/shadow file. The encrypted passwords are longer and they all sport the \$1\$ prefix, as in the second field of the following sample entry: root:\$1\$AAAni/yN\$uESHbzUpy9Cgfoo1Bf0tS0:11077:0:99999:7:-1:-1:134540356 An add-on program module called a *pluggable authentication module* (PAM) performs the MD5 encryption. Linux PAMs provide a flexible method for authenticating users. By setting the PAM's configuration files, you can change your authentication method on-the-fly, without modifying vital programs that verify a user's identity (such as login and passwd). Linux uses PAM capabilities extensively. The PAMs reside in many different modules (more on this momentarily); their configuration files are in the / etc/pam.d directory of your system. Check out the contents of this directory on your system by typing the following command: ls /etc/pam.d Each configuration file in this directory specifies how users are authenticated for a specific utility. Book VI Chapter 2 Securing Linux # Protecting Files and Directories One important aspect of securing the host is to protect important system files — and the directories that contain these files. You can protect the files through file ownership and the permission settings that control who can read, write, or (in the case of executable programs) execute the file. The default Linux file security is controlled through the following settings for each file or directory: - ♦ User ownership - ♦ Group ownership - ◆ Read, write, execute permissions for the owner - ◆ Read, write, execute permissions for the group - ◆ Read, write, execute permissions for others (everyone else) #### Viewing ownerships and permissions You can see settings related to ownership and permissions for a file when you look at a detailed listing with the ls -l command. For example, type the following command to see the detailed listing of the /etc/inittab file: ``` ls -1 /etc/inittab ``` The resulting listing looks something like this: ``` -rw-r--r-- 1 root root 1666 Feb 16 07:57 /etc/inittab ``` The first set of characters describes the file permissions for user, group, and others. The third and fourth fields show the user and group that own this file. In this case, both user and group names are the same: root. # Changing file ownerships You can set the user and group ownerships with the chown command. For example, if the file /dev/hda should be owned by the user root and the group disk, you type the following command as root to set up this ownership: ``` chown root.disk /dev/hda
``` To change the group ownership alone, use the chgrp command. For example, here's how you can change the group ownership of a file from whatever it was earlier to the group named accounting: ``` chgrp accounting ledger.out ``` #### Changing file permissions Use the chmod command to set the file permissions. To use chmod effectively, you have to specify the permission settings. One way is to concatenate one or more letters from each column of Table 2-1, in the order shown (Who/Action/Permission). | Table 2-1 | File Permiss | ion Codes | |------------|-----------------|-------------| | Who | Action | Permission | | u (user) | + (add) | r (read) | | g (group) | - (remove) | w (write) | | o (others) | = (assign) | x (execute) | | a (all) | s (set user ID) | | Book VI Chapter 2 Securing Linu To give everyone read and write access to all files in a directory, type **chmod a+rw***. On the other hand, to permit everyone to execute a specific file, type **chmod a+x** *filename*. Another way to specify a permission setting is to use a three-digit sequence of numbers. In a detailed listing, the read, write, and execute permission settings for the user, group, and others appear as the sequence rwxrwxrwx with dashes in place of letters for disallowed operations. Think of rwxrwxrwx as three occurrences of the string rwx. Now assign the values r=4, w=2, and x=1. To get the value of the sequence rwx, simply add the values of r, w, and x. Thus rwx = 7. With this formula, you can assign a three-digit value to any permission setting. For example, if the user can read and write the file but everyone else can only read the file, the permission setting is rw-r-r- (that's how it appears in the listing), and the value is 644. Thus, if you want all files in a directory to be readable by everyone but writable only by the user, use the following command: chmod 644 * # Setting default permission What permission setting does a file get when you (or a program) create a new file? The answer is in what is known as the *user file-creation mask*, which you can see and set by using the umask command. Type **umask**, and the command prints a number showing the current file-creation mask. For the root user, the mask is set to 022, whereas the mask for other users is 002. To see the effect of this file-creation mask and to interpret the meaning of the mask, follow these steps: 1. Log in as root and type the following command: ``` touch junkfile ``` This command creates a file named junkfile with nothing in it. 2. Type ls -l junkfile to see that file's permissions. You see a line similar to the following: ``` -rw-r--r-- 1 root root 0 Aug 24 10:56 junkfile ``` Interpret the numerical value of the permission setting by converting each three-letter permission in the first field (excluding the very first letter) to a number between 0 and 7. For each letter that's present, the first letter gets a value of 4, the second letter is 2, and the third is 1. For example, rw-translates to 4+2+0 (because the third letter is missing), or 6. Similarly, r-- is 4+0+0=4. Thus the permission string -rw--r-- becomes 644. 3. Subtract the numerical permission setting from 666 and what you get is the umask setting. In this case, 666 - 644 results in a umask of 022. Thus a umask of 022 results in a default permission setting of 666 - 022 = 644. When you rewrite 644 in terms of a permission string, it becomes rw-r--r--. To set a new umask, type **umask** followed by the numerical value of the mask. Here is how you go about it: 1. Figure out what permission settings you want for new files. For example, if you want new files that can be read and written only by the owner and no one else, the permission setting looks like this: ``` rw----- ``` 2. Convert the permissions into a numerical value by using the conversion method that assigns 4 to the first field, 2 to the second, and 1 to the third. Thus, for files that are readable and writable only by their owner, the permission setting is 600. 3. Subtract the desired permission setting from 666 to get the value of the mask. For a permission setting of 600, the mask becomes 666 - 600 = 066. 4. Use the umask command to set the file-creation mask by typing ``` umask 066 ``` A default umask of 022 is good for system security because it translates to files that have read and write permission for the owner and read permissions for everyone else. The bottom line is that you don't want a default umask that results in files that are writable by the whole world. # Checking for set user ID permission Another permission setting can be a security hazard. This permission setting, called the *set user ID* (or setuid and/or suid for short), applies to executable files. When the suid permission is enabled, the file executes under the user ID of the file's owner. In other words, if an executable program is owned by root and the suid permission is set, the program runs as if root is executing it — no matter who executed the program. The suid permission means that the program can do a lot more (for example, read all files, create new files, and delete files) than what a normal user program can do. Another risk is that if a suid program file has a security hole, crackers can do a lot more damage through such programs than through other vulnerabilities. You can find all suid programs with a simple find command: ``` find / -type f -perm +4000 ``` You see a list of files such as the following: ``` /bin/su /bin/ping /bin/eject /bin/mount /bin/ping6 /bin/umount /opt/kde4/bin/fileshareset /opt/kde4/bin/artswrapper /opt/kde4/bin/kcheckpass . . . lines deleted . . . ``` Many of the programs have the suid permission because they need it, but check the complete list and make sure that there are no strange suid programs (for example, suid programs in a user's home directory). For example, if you type **ls -l /bin/su**, you see the following permission settings: ``` -rwsr-xr-x 1 root root 25756 Aug 19 17:06 /bin/su ``` The s in the owner's permission setting (-rws) tells you that the suid permission is set for the /bin/su file, which is the executable file for the su command that you can use to become root or another user. Book VI Chapter 2 Securing Linux # Encrypting and Signing Files with GnuPG Linux comes with the *GNU Privacy Guard* (GnuPG, or simply GPG) encryption and authentication utility. With GPG, you can create your public and private key pair, encrypt files using your key, and also digitally sign a message to authenticate that it's really from you. If you send a digitally signed message to someone who has your public key, the recipient can verify that it was you who signed the message. # Understanding public key encryption The basic idea behind *public key encryption* is to use a pair of keys — one private and the other public — that are related but can't be used to guess one from the other. Anything encrypted with the private key can be decrypted only with the corresponding public key, and vice versa. The public key is for distribution to other people while you keep the private key in a safe place. You can use public key encryption to communicate securely with others; Figure 2-1 illustrates the basic idea. Suppose Alice wants to send secure messages to Bob. Each of them generates public key and private key pairs, after which they exchange their public keys. Then, when Alice wants to send a message to Bob, she simply encrypts the message using Bob's public key and sends the encrypted message to him. Now the message is secure from eavesdropping because only Bob's private key can decrypt the message — and only Bob has that key. When Bob receives the message, he uses his private key to decrypt the message and read it. Figure 2-1: Bob and Alice can communicate securely with public key encryption. At this point, you need to stop and think and say, "Wait a minute! How does Bob know the message really came from Alice? What if someone else uses Bob's public key and sends a message as if it came from Alice?" This situation is where digital signatures come in. # Understanding digital signatures The purpose of *digital*, or electronic, *signatures* is the same as pen-and-ink signatures, but how you sign digitally is different. Unlike a pen-and-ink signature, your digital signature depends on the message you're signing. The first step in creating a digital signature is to apply a mathematical function to the message and reduce it to a fixed-size message digest (also called a *hash* or a *fingerprint*). No matter how big your message, the message digest is usually 128 or 160 bits, depending on the hashing function. The next step is to apply public key encryption. Simply encrypt the message digest with your private key, and you get the digital signature for the message. Typically, the digital signature is added to the end of the message, and voilà — you get an electronically signed message. What good does the digital signature do? Well, anyone who wants to verify that the message is indeed signed by you takes your public key and decrypts the digital signature. What that person gets is the message digest (the encrypted hash) of the message. Then he or she applies the same hash function to the message and compares the computed hash with the decrypted value. If the two match, no one has tampered with the message. Because your public key was used to verify the signature, the message must have been signed with the private key known only to you. So the message must be from you! In the theoretical scenario of Alice sending private messages to Bob, Alice can digitally sign her message to make sure that Bob can tell that the message is really from her. Figure 2-2 illustrates the use of digital signatures along with normal public key encryption. Here's how Alice sends her private message to Bob with the assurance that Bob can really tell it's from her: - 1. Alice uses software to compute the message digest of the message and then encrypts the digest by using her private
key. This is her digital signature for the message. - **2.** Alice encrypts the message (again, using some convenient software *and* Bob's public key). - **3.** She sends both the encrypted message and the digital signature to Bob. - **4.** Bob decrypts the message, using his private key. - **5.** Bob decrypts the digital signature, using Alice's public key. This gives him the message digest. Book VI Chapter 2 Securing Linux Figure 2-2: Alice can digitally sign her message so that Bob can tell it's really from her. - **6.** Bob computes the message digest of the message and compares it with what he got by decrypting the digital signature. - 7. If the two message digests match, Bob can be sure that the message really came from Alice. # Using GPG GPG includes the tools you need to use public key encryption and digital signatures. You can figure out how to use GPG gradually as you begin using encryption. The following shows you some of the typical tasks you can perform with GPG. #### Generating the key pair The steps for generating the key pairs are as follows: 1. Type gpg --gen-key. If you're using gpg for the first time, it creates a <code>.gnupg</code> directory in your home directory and a file named <code>gpg.conf</code> in that directory. Then GPG asks what kind of keys you want: Please select what kind of key you want: - (1) DSA and ElGamal (default) - (2) DSA (sign only) - (4) RSA (sign only) Your selection? 2. Press Enter for the default choice because it's good enough. GPG then prompts you for the key size (the number of bits). 3. Press Enter again to accept the default value of 2,048 bits. GPG asks you when the keys expire. The default is to never expire. - 4. If the default is what you want (and why not?), press Enter. - 5. When GPG asks if you really want the keys to never expire, press the Y key to confirm. GPG prompts you for your name, your e-mail address, and finally a comment to make it easier to associate the key pair with your name. - **6.** Type each piece of requested information and press Enter. - 7. When GPG gives you a chance to change the information or confirm it as is, confirm by typing o and pressing Enter. GPG next prompts you for a passphrase that protects your private key. 8. Type a long phrase that includes lowercase and uppercase letters, numbers, and punctuation marks — the longer the better — and then press Enter. Be careful to choose a passphrase that you can easily remember. GPG generates the keys. It may ask you to perform some work on the PC so that the random-number generator can generate enough random numbers for the key-generation process. #### Exchanging keys To communicate with others, you have to give them your public key. You also have to get public keys from those who may send you a message (or someone who might sign a file and you want to verify the signature). GPG keeps the public keys in your key ring. (The *key ring* is simply the public keys stored in a file, but it sounds nice to call it a key ring because everyone has a key ring in the real world, and these are keys of a sort, right?) To list the keys in your key ring, type gpg --list-keys To send your public key to someone or to place it on a website, you have to export the key to a file. The best way is to put the key in what GPG documentation calls an *ASCII-armored* format, with a command like this: gpg --armor --export kdualney@insightbb.com > kdulaneykey.asc This command saves the public key in an ASCII-armored format (it basically looks like garbled text) in the file named kdulaneykey.asc. You would replace the e-mail address with your e-mail address (the one you used when you created the key) and replace the output filename to something different. Book VI Chapter 2 **Securing Linux** After you export the public key to a file, you can mail that file to others or place it on a website for use by others. When you import a key from someone, you typically get it in an ASCII-armored format as well. For example, if you have a us-cert@us-cert.gov GPG public key in a file named uscertkey.asc (obtained from the link at www.us-cert.gov/pgp/email.html), you then import it into the key ring with the following command: ``` gpg --import uscertkey.asc ``` Use the gpg --list-keys command to verify that the key is in your key ring. For example, here's what you might see when typing **gpg -list-keys** on the system: ``` /home/kdulaney/.gnupg/pubring.gpg pub 1024D/7B38A728 2013-08-28 uid Kristin Dulaney <kdulaney@insightbb.com> sub 2048g/3BD6D418 2013-08-28 pub 2048R/F0E187D0 2014-09-08 [expires: 2014-10-01] uid US-CERT Operations Key <us-cert@us-cert.gov> ``` The next step is to check the fingerprint of the new key. Type the following command to get the fingerprint of the US-CERT key: ``` gpg --fingerprint us-cert@us-cert.gov ``` GPG prints the fingerprint: ``` pub 2048R/F0E187D0 2013-09-08 [expires: 2014-10-01] Key fingerprint = 049F E3BA 240B 4CF1 3A76 06DC 1868 49EC F0E1 87D0 uid US-CERT Operations Key <us-cert@us-cert.gov> ``` At this point, you need to verify the key fingerprint with someone at the US-CERT organization. If you think the key fingerprint is good, you can sign the key and validate it. Here's the command you use to sign the key: ``` gpg --sign-key us-cert@us-cert.gov ``` GPG asks for confirmation and then prompts you for your passphrase. After that, GPG signs the key. Because key verification and signing is a potential weak link in GPG, be careful about what keys you sign. By signing a key, you basically say that you trust the key to be from that person or organization. #### Signing a file You may find signing files useful if you send a file to someone and want to assure the recipient that no one tampered with the file and that you did, in fact, send the file. GPG makes signing a file easy. You can compress and sign a file named message with the following command: ``` qpq -o message.siq -s message ``` To verify the signature, type ``` gpg --verify message.sig ``` To get back the original document, simply type ``` gpg -o message --decrypt message.sig ``` Sometimes you don't care about keeping a message secret, but you simply want to sign it to indicate that the message is from you. In such a case, you can generate and append a clear-text signature with the following command: ``` gpg -o message.asc --clearsign message ``` This command basically appends a clear-text signature to the text message. Here's a typical clear-text signature block: ``` ----BEGIN PGP SIGNATURE---- Version: GnuPG v1.4.2 (GNU/Linux) iD8DBQFDEhAtaHWlHHs4pygRAhiqAJ9Qj0pPMgKVBuokDyUZaEYVsp6RIQCfaoBm 9zCwrSAG9mo2DXJvbKS3ri8= =2uc/ ----END PGP SIGNATURE---- ``` When a message has a clear-text signature appended, you can use GPG to verify the signature with the following command: ``` gpg --verify message.asc ``` If you had indeed signed the message, the last line of the output says that it's a good signature. #### Encrypting and decrypting documents To encrypt a message meant for a recipient, you can use the --encrypt (or -e) GPG command. Here's how you might encrypt a message for US-CERT using its GPG key: ``` gpg -o message.gpg -e -r us-cert@us-cert.gov message ``` Book VI Chapter 2 Securing Linux The message is encrypted using the US-CERT public key (without a signature, but you can add the signature with the -s command). When US-CERT receives the message.gpg file, the recipient has to decrypt it using US-CERT's private key. Here's the command someone at US-CERT can use: ``` gpg -o message --decrypt message.gpg ``` GPG then prompts for the passphrase to unlock the US-CERT private key, decrypts the message, and saves the output in the file named message. If you simply want to encrypt a file and no one else has to decrypt the file, you can use GPG to perform *symmetric encryption*. In this case, you provide a passphrase to encrypt the file with the following GPG command: ``` gpg -o secret.gpg -c somefile ``` GPG prompts you for the passphrase and asks you to repeat the passphrase (to make sure that you didn't mistype anything). Then GPG encrypts the file using a key generated from the passphrase. To decrypt a file encrypted with a symmetric key, type ``` gpg -o myfile --decrypt secret.gpg ``` GPG prompts you for the passphrase. If you enter the correct passphrase, GPG decrypts the file and saves the output (in this example) in the file named myfile. # Monitoring System Security Even if you secure your system, you have to monitor the log files periodically for signs of intrusion. You may want to use Tripwire (a good tool for detecting any changes made to the system files) so that you can monitor the integrity of critical system files and directories. Your Linux system probably doesn't come with the Tripwire package. To use Tripwire, you have to buy it from www.tripwire.com. After you purchase and install Tripwire, you can configure it to monitor any changes to specified system files and directories on your system. Periodically examine the log files in the /var/log directory and its sub-directories. Many Linux applications, including some servers, write log information by using the logging capabilities of syslogd or rsyslogd. On Linux systems, the log files written by syslogd and rsyslogd reside in the /var/log directory. Make sure that only the root user can read and write these files. The syslogd configuration file is /etc/syslog.conf, and the rsyslogd configuration file (existing on many newer systems) is /etc/rsyslog. conf. The default configuration of syslogd generates the necessary log files; however, if you want to examine and understand the configuration file, type man syslog.conf for more information. # Securing Internet Services For an Internet-connected Linux system (or even one on a TCP/IP LAN that's not connected to the Internet), a significant threat is that someone could use one of many Internet services to gain access to your system. Each service — such as mail, web, or FTP — requires running a server program that
responds to client requests arriving over the TCP/IP network. Some of these server programs have weaknesses that can allow an outsider to log in to your system — maybe with root privileges. Luckily, Linux comes with some facilities that you can use to make the Internet services more secure. THARNING! Potential intruders can employ a *port-scanning tool* — a program that attempts to establish a TCP/IP connection at a port and then looks for a response — to check which Internet servers are running on your system. Then, to gain access to your system, the intruders can potentially exploit any known weaknesses of one or more services. # Turning off standalone services To provide Internet services, such as web, e-mail, and FTP, your Linux system has to run server programs that listen to incoming TCP/IP network requests. Some of these servers start when your system boots, and they run all the time. Such servers are *standalone servers*. The web server and mail server are examples of standalone servers. Another server, xinetd, starts other servers that are configured to work under xinetd. Some Linux systems use the inetd server instead of xinetd to start other servers. Some servers can be configured to run standalone or under a super server such as xinetd. For example, the vsftpd FTP server can be configured to run standalone or to run under the control of xinetd. In Debian, Ubuntu, and Xandros, use the update-rc.d command to turn off standalone servers and use the invoke-rc.d command to start or stop servers interactively. To get a clue about the available services, type ls /etc/init.d and look at all the script files designed to turn services on or off. You have to use these filenames when you want to turn a service on or off. For example, to turn off Samba service, type update-rc.d -f samba remove. If the service was already running, type invoke-rc.d samba stop to stop the service. You can use the invoke-rc.d command to stop any service in a similar manner. Book VI Chapter 2 Securing Linux In Fedora and SUSE, you can turn standalone servers on or off by using the <code>chkconfig</code> command. You can get the names of the service scripts by typing <code>ls/etc/init.d</code>. Then you can turn off a service (for example, Samba) by typing <code>chkconfig-del smb</code>. If the service was already running, type <code>/etc/init.d/smb stop</code> to stop the service. You can run scripts from the <code>/etc/init.d</code> directory with the <code>stop</code> argument to stop any service in a similar manner. # Configuring the Internet super server In addition to standalone servers such as a web server or mail server, other servers — inetd or xinetd — have to be configured separately. These servers are *Internet super servers* because they can start other servers on demand. Type **ps ax I grep inetd** to see which Internet super server — inetd or xinetd — your system runs. Debian, Ubuntu, and Xandros use inetd, and Fedora and SUSE use xinetd. The inetd server is configured through the /etc/inetd.conf file. You can disable a service by locating the appropriate line in that file and commenting it out by placing a pound sign (#) at the beginning of the line. After saving the configuration file, type /etc/init.d/inetd restart to restart the inetd server. Configuring the xinetd server is a bit more complicated. The xinetd server reads a configuration file named /etc/xinetd.conf at startup. This file, in turn, refers to configuration files stored in the /etc/xinetd.d directory. The configuration files in /etc/xinetd.d tell xinetd which ports to listen to and which server to start for each port. Type ls /etc/xinetd.d to see a list of the files in the /etc/xinetd.d directory on your system. Each file represents a service that xinetd can start. To turn off any of these services, edit the file in a text editor and add a disable = yes line in the file. After you make any changes to the xinetd configuration files, you must restart the xinetd server; otherwise, the changes don't take effect. To restart the xinetd server, type /etc/init.d/xinetd restart. This command stops the xinetd server and then starts it again. When it restarts, it reads the configuration files, and the changes take effect. # Configuring TCP wrapper security A security feature of both inetd and xinetd is their use of the TCP wrapper to start various services. The *TCP wrapper* is a block of code that provides an access-control facility for Internet services, acting like a protective package for your message. The TCP wrapper can start other services, such as FTP and TELNET; but before starting a service, it consults the /etc/hosts.allow file to see whether the host requesting the service is allowed to use that service. If nothing appears in /etc/hosts.allow about that host, the TCP wrapper checks the /etc/hosts.deny file to see if it denies the service. If both files are empty, the TCP wrapper provides access to the requested service. Here are the steps to follow to tighten access to the services that inetd or xinetd are configured to start: Use a text editor to edit the /etc/hosts.deny file, adding the following line into that file: ALL:ALL This setting denies all hosts access to any Internet services on your system. 2. Edit the /etc/hosts.allow file and add to it the names of hosts that can access services on your system. For example, to enable only hosts from the 192.168.1.0 network and the localhost (IP address 127.0.0.1) to access the services on your system, place the following line in the /etc/hosts.allow file: ``` ALL: 192.168.1.0/255.255.255.0 127.0.0.1 ``` 3. If you want to permit a specific remote host access to a specific Internet service, use the following syntax for a line in /etc/hosts.allow: ``` server program name: hosts ``` Here <code>server_program_name</code> is the name of the server program, and <code>hosts</code> is a comma-separated list of the hosts that can access the service. You may also write <code>hosts</code> as a network address or an entire domain name, such as <code>.mycompany.com</code>. # Using Secure Shell (SSH) for Remote Logins Linux comes with the *Open Secure Shell* (OpenSSH) software, a suite of programs that provides a secure replacement for the Berkeley r commands: rlogin (remote login), rsh (remote shell), and rcp (remote copy). OpenSSH uses public key cryptography to authenticate users and to encrypt the communication between two hosts, so users can securely log in from remote systems and copy files securely. This section briefly describes how to use the OpenSSH software in Linux. To find out more about OpenSSH and read the latest news about it, visit www.openssh.com or www.openssh.org. The OpenSSH software is installed during Linux installation. Table 2-2 lists the main components of the OpenSSH software. Book VI Chapter 2 Securing Linux | Table 2-2 Components of the OpenSSH Software | | | |--|--|--| | Component | Description | | | /usr/sbin/sshd | This Secure Shell daemon must run on a host if you want users on remote systems to use the ssh client to log in securely. When a connection from the ssh client arrives, sshd performs authentication using public key cryptography and establishes an encrypted communication link with the ssh client. | | | /usr/bin/ssh | Users can run this Secure Shell client to log in to a host that is running sshd. Users can also use ssh to execute a command on another host. | | | /usr/bin/slogin | This component is a symbolic link to /usr/bin/ssh. | | | /usr/bin/scp | This secure-copy program works like rcp but securely. The scp program uses ssh for data transfer and provides the same authentication and security as ssh. | | | /usr/bin/
ssh-keygen | You use this program to generate the public and private key pairs you need for the public key cryptography used in OpenSSH. The ssh-keygen program can generate key pairs for both RSA and DSA (Digital Signature Algorithm) authentication. (RSA comes from the initial of the last name of Ron Rivest, Adi Shamir, and Leonard Adleman — the developers of the RSA algorithm.) | | | /etc/ssh/
sshd_config | This configuration file for the sshd server specifies many parameters for sshd, including the port to listen to, the protocol to use, and the location of other files. (There are two versions of SSH protocols: SSH1 and SSH2, both supported by OpenSSH.) | | | /etc/ssh/
ssh_config | This configuration file is for the ssh client. Each user can also have an ssh configuration file named config in the .ssh subdirectory of the user's home directory. | | OpenSSH uses public key encryption, in which the sender and receiver both have a pair of keys — a public key and a private key. The public keys are freely distributed, and each party knows the other's public key. The sender encrypts data by using the recipient's public key. Only the recipient's private key can then decrypt the data. To use OpenSSH, you first need to start the sshd server and then generate the host keys. Here's how: - ♦ If you want to support SSH-based remote logins on a host, start the sshd server on your system. Type **ps ax | grep sshd** to see if the server is already running. If not, log in as root and turn on the SSH service. - ◆ Generate the host keys with the following command: ``` ssh-keygen -d -f /etc/ssh/ssh host key -N '' ``` The -d flag causes the ssh-keygen program to generate DSA keys, which the SSH2 protocol uses. If you see a message saying that the file /etc/ssh/ssh_host_key already exists, it means that the key pairs were generated during Linux installation. You can
use the existing file without having to regenerate the keys. A user who wants to log in using SSH can simply use the ${\tt ssh}$ command. For example: ``` ssh 192.168.0.4 -1 kdulaney ``` where 192.168.0.4 is the IP address of the other Linux system. SSH then displays a message: ``` The authenticity of host '192.168.0.4 (192.168.0.4)' can't be established. RSA key fingerprint is 7b:79:f2:dd:8c:54:00:a6:94:ec:fa:8e:7f:c9:ad:66. Are you sure you want to continue connecting (yes/no)? ``` Type **yes** and press Enter. SSH then adds the host to its list of known hosts and prompts you for a password on the other Linux system: ``` kdulaney@192.168.0.4's password: ``` After entering the password, you have a secure login session with that system. You can also log in to this account with the following equivalent command: ``` ssh kdulaney@192.168.0.4 ``` If you simply want to copy a file securely from another system on the LAN (identified by its IP address, 192.168.0.4), you can use scp like this: ``` scp 192.168.0.4:/etc/X11/xorg.conf ``` This command prompts for a password and securely copies the /etc/X11/ xorg.conf file from the 192.168.0.4 host to the system from which the scp command was typed, as follows: ``` kdulaney@192.168.0.4's password: (type the password.) xorg.conf 100% 2814 2.8KB/s 00:00 ``` Book VI Chapter 2 Securing Linux # Setting Up Simple Firewalls A firewall is a network device or host with two or more network interfaces one connected to the protected internal network and the other connected to unprotected networks, such as the Internet. The firewall controls access to and from the protected internal network. If you connect an internal network directly to the Internet, you have to make sure that every system on the internal network is properly secured — which can be nearly impossible because a single careless user can render the entire internal network vulnerable. A firewall is a single point of connection to the Internet: You can direct all your efforts toward making that firewall system a daunting barrier to unauthorized external users. Essentially, a firewall is like a protective fence that keeps unwanted external data and software out and sensitive internal data and software in. (See Figure 2-3.) The firewall runs software that examines the network packets arriving at its network interfaces, and then takes appropriate action based on a set of rules. The idea is to define these rules so they allow only authorized network traffic to flow between the two interfaces. Configuring the firewall involves setting up the rules properly. A configuration strategy is to reject all network traffic and then enable only a limited set of network packets to go through the firewall. The authorized network traffic would include the connections necessary to enable internal users to do things such as visit websites and receive electronic mail. To be useful, a firewall has the following general characteristics: - ◆ It must control the flow of packets between the Internet and the internal network. - ◆ It must *not* provide dynamic routing because dynamic routing tables are subject to route *spoofing* — the use of fake routes by intruders. Instead, the firewall uses static routing tables (which you can set up with the route command on Linux systems). - ♦ It must not allow any external user to log in as root. That way, even if the firewall system is compromised, the intruder is blocked from using root privileges from a remote login. - ◆ It must be kept in a physically secure location. - ◆ It must distinguish between packets that come from the Internet and packets that come from the internal protected network. This feature allows the firewall to reject packets that come from the Internet but have the IP address of a trusted system on the internal network. - It acts as the SMTP mail gateway for the internal network. Set up the sendmail software so that all outgoing mail appears to come from the firewall system. - ◆ Its user accounts are limited to a few user accounts for those internal users who need access to external systems. External users who need access to the internal network should use SSH for remote login (see "Using Secure Shell (SSH) for Remote Logins," earlier in this chapter). - It keeps a log of all system activities, such as successful and unsuccessful login attempts. - ◆ It provides DNS name-lookup service to the outside world to resolve any hostnames that are known to the outside world. - ◆ It provides good performance so that it doesn't hinder the internal users' access to specific Internet services (such as HTTP and FTP). A firewall can take many different forms. Here are three common forms of a firewall: ◆ Packet filter firewall: This simple firewall uses a router capable of filtering (blocking or allowing) packets according to a number of their characteristics, including the source and destination IP addresses, the network protocol (TCP or UDP), and the source and destination port numbers. Packet filter firewalls are usually placed at the outermost boundary with an untrusted network, and they form the first line of defense. An example of a packet filter firewall is a network router that employs filter rules to screen network traffic. Packet filter firewalls are fast and flexible, but they can't prevent attacks that exploit application-specific vulnerabilities or functions. They can log only a minimal amount of information, such as source IP address, destination IP address, and traffic type. Also, they're vulnerable to attacks and exploits that take advantage of flaws within the TCP/IP protocol, such as IP address spoofing, which involves altering the address information in network packets to make them appear to come from a trusted IP address. ◆ Stateful inspection firewall: This type of firewall keeps track of the network connections that network applications are using. When an application on an internal system uses a network connection to create a session with a remote system, a port is also opened on the internal system. This port receives network traffic from the remote system. For successful Book VI Chapter 2 Securing Linux connections, packet filter firewalls must permit incoming packets from the remote system. Opening up many ports to incoming traffic creates a risk of intrusion by unauthorized users who abuse the expected conventions of network protocols such as TCP. Stateful inspection firewalls solve this problem by creating a table of outbound network connections, along with each session's corresponding internal port. This *state table* is then used to validate any inbound packets. This stateful inspection is more secure than a packet filter because it tracks internal ports individually rather than opening all internal ports for external access. ◆ Application-proxy gateway firewall: This firewall acts as an intermediary between internal applications that attempt to communicate with external servers such as a web server. For example, a web proxy receives requests for external web pages from web browser clients running inside the firewall and relays them to the exterior web server as though the firewall was the requesting web client. The external web server responds to the firewall, and the firewall forwards the response to the inside client as though the firewall was the web server. No direct network connection is ever made from the inside client host to the external web server. Application-proxy gateway firewalls have some advantages over packet filter firewalls and stateful inspection firewalls. First, application-proxy gateway firewalls examine the entire network packet rather than only the network addresses and ports. This enables these firewalls to provide more extensive logging capabilities than packet filters or stateful inspection firewalls. Another advantage is that application-proxy gateway firewalls can authenticate users directly, whereas packet filter firewalls and stateful inspection firewalls normally authenticate users on the basis of the IP address of the system (that is, source, destination, and protocol type). Given that network addresses can be easily spoofed, the authentication capabilities of application-proxy gateway firewalls are superior to those found in packet filter and stateful inspection firewalls. The advanced functionality of application-proxy gateway firewalls, however, results in some disadvantages when compared with packet filter or stateful inspection firewalls. First, because of the full packet awareness found in application-proxy gateways, the firewall is forced to spend significant time reading and interpreting each packet. Therefore application-proxy gateway firewalls are generally not well suited to highbandwidth or real-time applications. To reduce the load on the firewall, a dedicated proxy server can be used to secure less time-sensitive services, such as e-mail and most web traffic. Another disadvantage is that application-proxy gateway firewalls are often limited in terms of support for new network applications and protocols. An individual applicationspecific proxy agent is required for each type of network traffic that needs to go through the firewall. Most vendors of application-proxy gateways provide generic proxy agents to support undefined network protocols or applications. However, those generic agents tend to negate many of the strengths of the application-proxy gateway architecture, and they simply allow traffic to tunnel through the firewall. Most firewalls implement a combination of these firewall functionalities. For example, many vendors of packet filter firewalls or stateful inspection firewalls have also implemented basic application-proxy functionality to offset some of the weaknesses associated with their firewalls. In most cases, these vendors implement application proxies to provide better logging of network traffic and stronger user authentication. Nearly all major firewall vendors have introduced multiple firewall functions into
their products in some manner. In a large organization, you may also have to isolate smaller internal networks from the corporate network. You can set up such internal firewalls the same way that you set up Internet firewalls. #### Using NAT Network Address Translation (NAT) is an effective tool that enables you to *hide* the network addresses of an internal network behind a firewall. In essence, NAT allows an organization to use private network addresses behind a firewall while maintaining the ability to connect to external systems through the firewall. Here are the three methods for implementing NAT: - ◆ Static: In static NAT, each internal system on the private network has a corresponding external, routable IP address associated with it. This particular technique is seldom used because unique IP addresses are in short supply. - ◆ **Hiding:** With hiding NAT, all systems behind a firewall share the same external, routable IP address, while the internal systems use private IP addresses. Thus, with a hiding NAT, a number of systems behind a firewall still appear to be a single system. - ◆ Port address translation: With port address translation, you can place hosts behind a firewall system and still make them selectively accessible to external users. In terms of strengths and weaknesses, each type of NAT — static, hiding, or port address translation — is applicable in certain situations; the variable is the amount of design flexibility offered by each type. Static NAT offers the most flexibility, but it's not always practical because of the shortage of IP addresses. Hiding NAT technology is seldom used because port address translation offers additional features. Port address translation is often the most convenient and secure solution. # Enabling packet filtering on your Linux system The Linux kernel has built-in packet filtering software in the form of something called netfilter. You use the iptables command to set up the rules for what happens to the packets based on the IP addresses in their header and the network connection type. Book VI Chapter 2 Securing Linux To find out more about netfilter and iptables, visit the documentation section of the netfilter website at www.netfilter.org/documentation. The built-in packet filtering capability is handy when you don't have a dedicated firewall between your Linux system and the Internet. This is the case, for example, when you connect your Linux system to the Internet through a DSL or cable modem. Essentially, you can have a packet filtering firewall inside your Linux system, sitting between the kernel and the applications. #### Using the security level configuration tool Some Linux distributions, such as Fedora and SUSE, include GUI tools to turn on a packet filtering firewall. In Fedora, you can turn on different levels of packet filtering through the graphical Firewall Configuration tool. To run the tool, log in as root and choose Activities then type in Firewall. The Firewall Configuration window appears (see Figure 2-4) along with an authentication window. Figure 2-4: In Fedora, you can configure the firewall with this tool. From the Firewall Configuration dialog box, you can select two predefined levels of simple firewalling (more precisely, packet filtering): ◆ Disabled: This option doesn't perform any filtering and allows all connections. (You can still turn off Internet services by not running the servers or disabling them in the xinetd configuration files.) This security level is fine if your Linux system is inside a protected local area network or if you have a separate firewall device. ◆ Enabled: This option turns on packet filtering. You can then select the services that you want to allow and the network devices that you trust. You can allow incoming packets meant for specific Internet services such as SSH, TELNET, and FTP. If you select a network interface such as eth0 (the first Ethernet card) as trusted, all network traffic over that interface is allowed without any filtering. In SUSE, to set up a firewall, choose Main Menuc>Systemc>YaST. In the YaST Control Center window that appears, click Security and Users on the left side of the window and then click Firewall on the right side. YaST opens a window that you can use to configure the firewall. You can designate network interfaces (by device name, such as eth0, ppp0, and so on) to one of three zones: internal, external, or demilitarized zone. Then, for that zone, you can specify what services (such as HTTP, FTP, and SSH) are allowed. If you have two or more network interfaces and you use the Linux system as a gateway (a router), you can enable forwarding packets between network interfaces (a feature called *masquerading*). Figure 2-5 shows an example of this feature in the Firewall Configuration tool included with Fedora. Book VI Chapter 2 Securing Linux Figure 2-5: In Fedora, you can turn on masquerading with a single click. You can also turn on different levels of logging (for example, logging all dropped packets that attempt connection at specific ports). If you make changes to firewall settings, click the Startup category and click Save Settings and Restart Firewall Now. #### Using the iptables command The GUI firewall configuration tools use the iptables command to implement the firewall. If your Linux system doesn't have a GUI tool, you can use iptables directly to configure firewalling on your Linux system. Using the iptables command is somewhat complex. The iptables command uses the concept of a chain, which is a sequence of rules. Each rule says what to do with a packet if the header contains certain information (such as the source or destination IP address). If a rule doesn't apply, iptables consults the next rule in the chain. By default, there are three chains: - **♦ INPUT chain:** The first set of rules against which packets are tested. The packets continue to the next chain only if the INPUT chain doesn't specify DROP or REJECT. - ◆ FORWARD chain: Contains the rules that apply to packets attempting to pass through this system to another system (when you use your Linux system as a router between your LAN and the Internet, for example). - ◆ OUTPUT chain: Includes the rules applied to packets before they are sent out (either to another network or to an application). When an incoming packet arrives, the kernel uses iptables to make a routing decision based on the destination IP address of the packet. If the packet is for this server, the kernel passes the packet to the INPUT chain. If the packet satisfies all the rules in the INPUT chain, the packet is processed by local processes such as an Internet server that is listening for packets of this type. If the kernel has IP forwarding enabled and the packet has a destination IP address of a different network, the kernel passes the packet to the FORWARD chain. If the packet satisfies the rules in the FORWARD chain, it's sent out to the other network. If the kernel doesn't have IP forwarding enabled and the packet's destination address isn't for this server, the packet is dropped. If the local processing programs that receive the input packets want to send network packets out, those packets pass through the OUTPUT chain. If the OUTPUT chain accepts those packets, they're sent out to the specified destination network. You can view the current chains, add rules to the existing chains, or create new chains of rules by using the iptables command. When you view the current chains, you can also save them to a file. For example, if you had configured nothing else and your system has no firewall configured, typing **iptables -L** should show the following: ``` Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination ``` In this case, all three chains — INPUT, FORWARD, and OUTPUT — show the same ACCEPT policy, which means everything is wide open. If you're setting up a packet filter, the first thing you do is specify the packets that you want to accept. For example, to accept packets from the 192.168.0.0 network address, add the following rule to the INPUT chain: ``` iptables -A INPUT -s 192.168.0.0/24 -j ACCEPT ``` Now add a rule to drop everything except local loopback (the 10 network interface) traffic and stop all forwarding with the following commands: ``` iptables -A INPUT -i ! lo -j REJECT iptables -A FORWARD -j REJECT ``` The first iptables command, for example, appends to the INPUT chain (-A INPUT) the rule that if the packet does not come from the lo interface (-i ! lo), iptables rejects the packet (-j REJECT). Before rejecting all other packets, you may also add more rules to each INPUT chain to allow specific packets in. You can select packets to accept or reject based on many parameters, such as IP addresses, protocol types (TCP, UDP), network interface, and port numbers. You can do all sorts of specialized packet filtering with iptables. For example, suppose you set up a web server and want to accept packets meant for only HTTP (port 80) and Secure Shell (SSH) services. The Secure Shell service (port 22) is for you to securely log in and administer the server. Suppose the server's IP address is 192.168.0.10. Here is how you might set up the rules for this server: ``` iptables -P INPUT DROP iptables -A INPUT -s 0/0 -d 192.168.0.10 -p tcp --dport 80 -j ACCEPT iptables -A INPUT -s 0/0 -d 192.168.0.10 -p tcp --dport 22 -j ACCEPT ``` In this case, the first rule sets up the default policy of the INPUT chain to DROP, which means that if none of the specific rules match, the packet will be dropped. The next two rules say that packets addressed to 192.168.0.10 and meant for ports 80 and 22 are accepted. Book VI Chapter 2 Securing Linux Don't type iptables commands from a remote login session. A rule that begins denying packets from all addresses can also stop what you type from reaching the system; if that
happens, you may have no way of accessing the system over the network. To avoid unpleasant surprises, always type iptables rules at the console — the keyboard and monitor connected directly to your Linux PC that is running the packet filter. If you want to delete all filtering rules in a hurry, type **iptables -F** to flush them. To change the default policy for the INPUT chain to ACCEPT, type **iptables -t filter -P INPUT ACCEPT**. This causes iptables to accept all incoming packets by default. Not every iptables command is discussed in this section. You can type **man iptables** to read a summary of the commands. You can also read about netfilter and iptables at www.iptables.org. After you define the rules by using the iptables command, they're in memory and are gone when you reboot the system. Use the iptables-save command to store the rules in a file. For example, you can save the rules in a file named iptables.rules by using the following command: ``` iptables-save > iptables.rules ``` Here's a listing of the iptables.rules file generated on a Fedora system: ``` # Generated by iptables-save v1.3.0 on Sun Dec 28 16:10:12 2014 *filter :FORWARD ACCEPT [0:0] :INPUT ACCEPT [0:0] :OUTPUT ACCEPT [6:636] -A FORWARD -j REJECT --reject-with icmp-port-unreachable -A INPUT -s 192.168.0.0/255.255.255.0 -j ACCEPT -A INPUT -i ! lo -j REJECT --reject-with icmp-port-unreachable COMMIT # Completed on Sun Dec 28 16:10:12 2014 ``` These rules correspond to the following iptables commands used to configure the filter: ``` iptables -A INPUT -s 192.168.0.0/24 -j ACCEPT iptables -A INPUT -i ! lo -j REJECT iptables -A FORWARD -j REJECT ``` If you want to load these saved rules into iptables, use the following command: ``` iptables-restore < iptables.rules ``` # Security Files to Be Aware Of Table 2-3 lists eleven files, or directories, that security administrators should be aware of and able to explain the purpose of. | Table 2-3 | Key Security Files | |-----------------------|--| | File | Description | | /etc/nologin | If this file exists, it denies login to all users except root. This can be handy when maintenance needs to be done and users need to stay off the system for a period of time. Removing the file restores login capability for all users. The file can be created as a text file with any editor, or you can often use the nologin command to create it. | | /etrc/passwd | This file holds much of the user account information and is addressed heavily in this chapter. | | /etc/shadow | When shadowing is turned on — which it almost always is — then password values (hashes) are stored in this file (which is more secure) as opposed to in /etrc/passwd. | | /etrc/
xinetd.d/* | This directory can be used to store configuration files used by xinetd, the server daemon. | | /etrc/xinetd. | This is the main configuration file used by xinetd, the server daemon. | | /etrcxinetd.d/* | This directory can be used to store configuration files used by inetd, the Internet daemon. In almost all distributions, inetd has been replaced by xinetd. | | /etrc/inetd.
conf | This is the main configuration file used by inetd, the Internet daemon. | | /etrc/inittab | This is the initial startup (initialization) table used to identify what starts and stops as the system is booted and changes run states. | | /etrc/init.d/* | This directory can hold configuration files that are used during the change of run states/level and referenced by the inittab file. | | /etrc/hosts.
allow | If this file exists, then it specifically lists the hosts that are allowed to network with this one. If the file does not exist, then the default is that all hosts are allowed to network with this one. | | /etrc/hosts.
deny | If this file exists, then it specifically lists the hosts that are not allowed to network with this one. If the file does not exist, then the default is that all hosts are allowed to network with this one. | | | The three possibilities are that there is an allow file identifying only hosts that can, a deny file that identifies only hosts that cannot, or neither file – in which case all other hosts are allowed to network with this one. | Book VI Chapter 2 # Chapter 3: Computer Security Audits and Vulnerability Testing Types ### In This Chapter Understanding computer security audits - ✓ Learning a security test methodology - Reviewing host and network security - Appreciating vulnerability testing - Exploring different security testing tools hen you see the term *audit*, the odds are good you think of the kind involving taxes. In actuality, many types of audits exist, and one of them is a *computer security audit*. The purpose of a computer security audit, in its simplest form, is to test your system and network security. For larger organizations, an independent auditor (much like with the auditing of financial statements) can do the security audit. If you have only a few Linux systems or a small network, you can do the security audit as a self-assessment, just to figure out if you're doing everything okay. This chapter explains how to perform computer security audits and shows you a number of free tools and resources to help you test your system's security. # **Understanding Security Audits** An *audit* is simply an independent assessment of whatever it is you're auditing. So a *computer security audit* is an independent assessment of computer security. If someone conducts a computer security audit of your organization, he or she focuses typically on two areas: - ◆ **Independent verification** of whether your organization complies with its existing policies and procedures for computer security. This part is the nontechnical aspect of the security audit. - ◆ Independent testing of how effective your security controls (any hardware and software mechanisms you use to secure the system) are. This part is the technical aspect of the security audit. Why do you need security audits? For the same reason you need financial audits — mainly to verify that everything is being done the way it's supposed to be done. For public as well as private organizations, management may want to have independent security audits done so as to assure themselves that their security is A-OK. Irrespective of your organization's size, you can always perform security audits on your own, either to prepare for independent security audits or simply to know that you're doing everything correctly. No matter whether you have independent security audits or a self-assessment, here are some of the benefits you get from security audits: - Periodic risk assessments that consider internal and external threats to systems and data - Periodic testing of the effectiveness of security policies, security controls, and techniques - Identification of any significant deficiencies in your system's security (so you know what to fix) - ◆ In the case of self-assessments, preparation for any annual independent security testing that your organization might have to face # Nontechnical aspects of security audits The nontechnical side of computer security audits focuses on your organization-wide security framework. The audit examines how well the organization has set up and implemented the policies, plans, and procedures for computer security. Here's a list of some items to be verified: - ♦ Risks are periodically assessed. - ◆ An entity-wide security program plan is in place. - ◆ A security program-management structure is in place. - **♦** Computer security responsibilities are clearly assigned. - ♦ Effective security-related personnel policies are in place. - ◆ The security program's effectiveness is monitored and changes are made when needed. As you may expect, the nontechnical aspects of the security audit involve reviewing documents and interviewing appropriate individuals to find out how the organization manages computer security. For a small organization or a home PC, expecting plans and procedures in documents is ridiculous. In those cases, simply make sure that you have some technical controls in place to secure your system and your network connection. # Technical aspects of security audits The technical side of computer security audits focuses on testing the technical controls that secure your hosts and network. The testing involves determining - ♦ How well the host is secured. Are all operating system patches applied? Are the file permissions set correctly? Are user accounts protected? Are file changes monitored? Are log files monitored? And so on. - ♦ How well the network is secured. Are unnecessary Internet services turned off? Is a firewall installed? Are remote logins secured with tools such as SSH? Are TCP wrapper access controls used? And so on. Typically, security experts use automated tools to perform these two security reviews, for individual hosts and for the entire network. # Implementing a Security Test Methodology A key element of a computer security audit is a security test that checks the technical mechanisms used to secure a host and the network. The security-test methodology follows these high-level steps: - **1.** Take stock of the organization's networks, hosts, network devices (routers, switches, firewalls, and so on), and Internet connection. - 2. If there are many hosts and network connections, determine which are the important hosts and network devices that need to be tested. The importance of a host depends on the kinds of applications it runs. For example, a host that runs the corporate database would be more important than the hosts that serve as desktop systems. - **3.** Test the hosts individually. Typically, this step involves logging in
as a system administrator and checking various aspects of host security, from passwords to system log files. - **4.** Test the network. This step is usually performed by attempting to break through the network defenses from another system on the Internet. If there's a firewall, the testing checks that the firewall is indeed configured correctly. - **5.** Analyze the test results of both host and network tests to determine vulnerabilities and risks. Each of the two types of testing — host and network — focuses on three areas of overall computer security: ◆ **Prevention:** Includes the mechanisms (nontechnical and technical) that help prevent attacks on the system and the network. Book VI Chapter 3 Computer Security Audits and Vulnerability Testing Types - ◆ Detection: Refers to techniques such as monitoring log files, checking file integrity, and using *intrusion detection* systems that can detect when someone is about to break into (or has already broken into) your system. - ◆ Response: Includes the steps for tasks such as reporting an incident to authorities and restoring important files from backup after a computer security incident occurs. For host and network security, each of these areas has some overlaps. For example, prevention mechanisms for host security (such as good passwords or file permissions) can also provide network security. Nevertheless, thinking in terms of the three areas — prevention, detection, and response — does help. # Some common computer vulnerabilities Before you can think of prevention, however, you have to know the types of problems you're trying to prevent — the common security vulnerabilities. The prevention and detection steps typically depend on the specific vulnerabilities. Basically, the idea is to check whether a host or a network has the vulnerabilities that crackers exploit. #### Online resources on computer vulnerabilities Several online resources identify and categorize computer security vulnerabilities: - ◆ SANS Institute publishes a list of the top 20 most critical Internet security vulnerabilities the Top Cyber Security Risks index at www.sans. org/top20. - ◆ CVE (Common Vulnerabilities and Exposures) is a list of standardized names of vulnerabilities. For more information on CVE, see http://cve.mitre.org. Using the CVE name to describe vulnerabilities is common practice. - ◆ National Vulnerability Database (NVD) is a searchable index of information on computer vulnerabilities, published by the National Institute of Standards and Technology (NIST), a United States government agency. NVD is online at http://nvd.nist.gov. #### Typical computer vulnerabilities The SANS Internet security vulnerabilities list includes several types of vulnerabilities, such as Windows, cross-platform, and Unix. Of these, Unix and cross-platform vulnerabilities are relevant to Linux. Table 3-1 summarizes some common Unix and cross-platform vulnerabilities that apply to Linux. | Table 3-1 Some | Common Vulnerabilities to Unix Systems | |---------------------------------------|--| | Vulnerability Type | Description | | BIND DNS | Berkeley Internet Name Domain (BIND) is a package that implements Domain Name System (DNS), the Internet's name service that translates a name to an IP address. Some versions of BIND have vulnerabilities. | | Apache Web Server | Some Apache Web Server modules (such as mod_ssl) have known vulnerabilities. Any vulnerability in Common Gateway Interface (CGI) programs used with web servers to process interactive web pages can provide attackers a way to gain access to a system. | | Authentication | User accounts often have no passwords or have weak passwords that are easily cracked by password-cracking programs. | | CVS, Subversion | Concurrent Versions System (CVS) is a popular source-code control system used in Linux systems. Subversion is another version control system for Linux that is becoming popular. These version control systems have vulnerabilities that can enable an attacker to execute arbitrary code on the system. | | sendmail | sendmail is a complex program used to transport mail messages from one system to another, and some versions of sendmail have vulnerabilities. | | SNMP | Simple Network Management Protocol (SNMP) is used to remotely monitor and administer various network-connected systems ranging from routers to computers. SNMP lacks good access control, so an attacker may be able to reconfigure or shut down your system if it is running SNMP. | | Open Secure Sockets Laye
(OpenSSL) | Many applications, such as Apache Web Server, use OpenSSL to provide cryptographic security for a network connection. Unfortunately, some versions of OpenSSL have known vulnerabilities that could be exploited. | Book VI Chapter 3 Security Audits and Vulnerability Testing Types | Table 3-1 (continued) | | | |--|---|--| | Vulnerability Type | Description | | | Network File System (NFS) and
Network Information Service (NIS) | Both NFS and NIS have many security problems (for example, buffer overflow, potential for denial-of-service attacks, and weak authentication). Also, NFS and NIS are often misconfigured, which could allow local and remote users to exploit the security holes. | | | Databases | Databases such as MySQL and PostgreSQL are complex applications and can be difficult to correctly configure and secure. These databases have many features that can be misused or exploited to compromise the confidentiality, availability, and integrity of data. | | | Linux kernel | The Linux kernel is susceptible to many vulnerabilities, such as denial of service, execution of arbitrary code, and root-level access to the system. | | # Host-security review When reviewing host security, focus on assessing the security mechanisms in each of the following areas: - ◆ Prevention: Install operating system updates, secure passwords, improve file permissions, set up a password for a boot loader, and use encryption. - ◆ **Detection:** Capture log messages and check file integrity with Tripwire (a tool that can detect changes to system files). - ◆ **Response:** Make routine backups and develop incident response procedures. The following sections review a few of these host-security mechanisms. #### Operating system updates Linux distributions release updates soon. When security vulnerabilities are found, Linux distributions release an update to fix the problem. Many distributions offer online updates that you can enable and use to keep your system up to date. The details of updating the operating system depend on the distribution. (See Book V, Chapter 4 for information on how to update Linux online.) #### File permissions Protect important system files with appropriate file ownerships and file permissions. The key procedures in assigning file-system ownerships and permissions are as follows: - ◆ Figure out which files contain sensitive information and why. Some files may contain sensitive data related to your work or business, whereas many other files are sensitive because they control the Linux system configuration. - ◆ Maintain a current list of authorized users and what they are authorized to do on the system. - ◆ Set up passwords, groups, file ownerships, and file permissions to allow only authorized users to access the files. Table 3-2 lists some important system files in Linux, showing the typical numeric permission setting for each file (this may differ slightly, depending on the distribution). See Chapter 2 of this minibook for more on numeric permission settings. Book VI Chapter 3 Security Audits and Vulnerability Testing Types | Table 3-2 Impor | ortant System Files and Their Permissions | | |-------------------------|---|--| | File Pathname | Permission | Description | | /boot/grub/menu.
lst | 600 | GRUB boot loader menu file | | /etc/cron.allow | 400 | List of users permitted to use cron to submit periodic jobs | | /etc/cron.deny | 400 | List of users who can't use cron to submit periodic jobs | | /etc/crontab | 644 | System-wide periodic jobs | | /etc/hosts.allow | 644 | List of hosts allowed to use
Internet services that are started
using TCP wrappers | | /etc/hosts.deny | 644 | List of hosts denied access to
Internet services that are started
using TCP wrappers | | /etc/logrotate. | 644 | File that controls how log files rotate | | /etc/pam.d | 755 | Directory with configuration files for pluggable authentication modules (PAMs) | | /etc/passwd | 644 | Old-style password file with user account information but not the passwords | | | | (continued | | File Pathname | Permission | Description | |--------------------------|------------|---| | /etc/rc.d | 755 | Directory with system-startup scripts | | /etc/securetty | 600 | TTY interfaces (terminals) from which root can log in | | /etc/security | 755 | Policy files that control system access | | /etc/shadow | 400 | File with encrypted passwords and password expiration information | | /etc/shutdown.
allow | 400 | Users who can shut down or reboot by pressing Ctrl+Alt+Delete | | /etc/ssh | 755 | Directory with configuration
files for the Secure Shell (SSH) | | /etc/sysconfig | 755 | System configuration files | | /etc/sysctl.conf | 644 | Kernel configuration parameters | | /etc/syslog.conf | 644 | Configuration file for the syslogd server that logs messages | | /etc/udev/udev.
conf | 644 | Configuration file for udev — the program that provides the capability to dynamically name hotpluggable devices and create the device files in the /dev directory | | /etc/vsftpd | 600 | Configuration file for the Very
Secure FTP server | | /etc/vsftpd.
ftpusers | 600 | List of users who are not allowed to use FTP to transfer files | | /etc/xinetd.conf | 644 | Configuration file for the xinetd server | | /etc/xinetd.d | 755 | Directory containing configuration files for specific services that the xinetd server can start | | /var/log | 755 | Directory with all log files | | /var/log/lastlog | 644 | Information about all previous logins | | /var/log/messages | 644 | Main system message log file | | /var/log/wtmp | 664 | Information about current logins | Another important check is to look for executable program files that have the setuid permission. If a program has setuid permission and is owned by root, the program runs with root privileges, no matter who actually runs the program. You can find all setuid programs with the following find command: find / -perm +4000 -print You may want to save the output in a file (just append > filename to the command) and then examine the file for any unusual setuid programs. For example, a setuid program in a user's home directory is unusual. #### Password security Verify that the password, group, and shadow password files are protected. In particular, the shadow password file has to be write-protected and readable only by root. The filenames and their recommended permissions are shown in Table 3-3. | Table 3-3 | Ownership and Permission of Password Files | | |---------------|--|------------| | File Pathname | Ownership | Permission | | /etc/group | root.root | 644 | | /etc/passwd | root.root | 644 | | /etc/shadow | root.root | 400 | #### Incident response *Incident response* is the policy that answers the question of what to do if something unusual does happen to the system. The policy tells you how to proceed if someone breaks into your system. Your response to an incident depends on how you use your system and how important it is to you or your business. For a comprehensive incident response, remember these key points: - ◆ Figure out how critical and important your computer and network are and identify who or what resources can help you protect your system. - ◆ Take steps to prevent and minimize potential damage and interruption. - ◆ Develop and document a comprehensive contingency plan. - Periodically test the contingency plan and revise the procedures as appropriate. Book VI Chapter 3 Computer Security Audits and Vulnerability Testing Types # Network-security review A *network-security review* focuses on assessing the security mechanisms in each of the following areas: - ◆ **Prevention:** Set up a firewall, enable packet filtering, disable unnecessary inetd or xinetd services, turn off unneeded Internet services, use TCP wrappers for access control, and use SSH for secure remote logins. - ◆ **Detection:** Use network intrusion detection and capture system logs. - **♦ Response:** Develop incident response procedures. Some key steps in assessing the network security are described in the following three subsections. #### Services started by inetd or xinetd Depending on your distribution, the inetd or xinetd server may be configured to start some Internet services such as TELNET and FTP. The decision to turn on some of these services depends on such factors as how the system connects to the Internet and how the system is being used. You can usually turn off most inetd and xinetd services by commenting out the line — just place a pound sign (#) at the beginning of the line. If you are using xinetd, it is possible to see which services are turned off by checking the configuration files in the /etc/xinetd.d directory for all the configuration files that have a disable = yes line. (The line doesn't count if it's commented out, which is indicated by a # character at the beginning of the line.) You can add a disable = yes line to the configuration file of any service that you want to turn off. Also check the following files for any access controls used with the inetd or xinetd services: - ♦ /etc/hosts.allow lists hosts allowed to access specific services. - ♦ /etc/hosts.deny lists hosts denied access to services. #### Standalone services Many services, such as apache or httpd (web server) and sendmail (mail server), start automatically at boot time, assuming they're configured to start that way. In some distributions, you can use the <code>chkconfig</code> command to check which of these standalone servers are set to start at various run levels. (See Book V, Chapter 1 for more about run levels.) Typically, most systems start up at run level 3 (for text login) or 5 (for graphical login). Therefore, what matters is the setting for the servers in levels 3 and 5. To view the list of servers, type <code>chkconfig</code>—<code>list</code> | <code>more</code>. When you do a self-assessment of your network security and find that some servers shouldn't be running, you can turn them off for run levels 3 and 5 by typing **chkconfig –level 35** *servicename* **off**, where *servicename* is the name of the service you want to turn off. In some distributions, you can use a GUI tool to see which services are enabled and running at any run level. With YaST, for example, click System on the left side of the window, and then click Runlevel Editor on the right side of the window. When you audit network security, make a note of all the servers that are turned on — and then try to determine whether they should really *be* on, according to what you know about the system. The decision to turn on a particular service depends on how your system is used (for example, as a web server or as a desktop system) and how it's connected to the Internet (say, through a firewall or directly). #### Penetration test A penetration test is the best way to tell what services are really running on a Linux system. *Penetration testing* involves trying to get access to your system from an attacker's perspective. Typically, you perform this test from a system on the Internet and try to break in or, at minimum, get access to services running on your Linux system. One aspect of penetration testing is to see what ports are open on your Linux system. The *port number* is simply a number that identifies TCP/IP network connections to the system. The attempt to connect to a port succeeds only if a server is running, or "listening," on that port. A port is considered to be open if a server responds when a connection request for that port arrives. The first step in penetration testing is to perform a port scan. The term *port scan* describes the automated process of trying to connect to each port number to see whether a valid response comes back. Many available automated tools can perform port scanning — you can install and use a popular port-scanning tool called nmap (described later in this chapter). After performing a port scan, you know which ports are open and could be exploited. Not all servers have security problems, but many servers have well-known vulnerabilities. An open port provides a cracker a way to attack your system through one of the servers. In fact, you can use automated tools called *vulnerability scanners* to identify vulnerabilities that exist in your system (some vulnerability scanners are described in the following sections). Whether your Linux system is connected to the Internet directly (through DSL or cable modem) or through a firewall, use the port-scanning and vulnerability-scanning tools to figure out whether you have any holes in your defenses. Book VI Chapter 3 Computer Security Audits and Vulnerability Testing Types # Vulnerability Testing Types The number-one purpose of penetration testing is to identify vulnerabilities. When viewing such a test from this angle, it is important to understand that there are three ways of approaching it: black, white, or gray. These three approaches differ in the amount of information you assume you have in the beginning; you can use the color with almost any other word: black box versus white box if it is a piece of software doing the testing; black hat versus white hat if is an individual doing the testing; and so on. The following discussion focuses on the individual and uses box as the preferred noun. - ♦ With *black-box testing*, the tests assume no knowledge of the network and look for vulnerabilities that an outsider might stumble across, such as open ports and weak passwords. - Imagine that a bored miscreant came across your network at random and decided to bring it to its knees. - ◆ With *white-box testing*, the test assumes that the attacker is a knowledgeable insider who's trying to break the system. - Imagine that you just fired a system administrator and they want to get back at you by crashing your network. - Between these two extremes rests the realm of gray-box testing. Here the assumption is that an insider is behind the problem. Imagine someone from shipping is angry about not getting the raise he or she thought was deserved, and so wants to make the company pay. The attacker doesn't have the knowledge an administrator would, but still knows more about the systems than a complete outsider would. # **Exploring Security Testing Tools** Many automated tools are available to perform security testing. Some of these tools are meant for finding the open ports on every system in a range of IP addresses. Others look for the vulnerabilities associated with open ports. Yet other tools can capture (or *sniff*) those weaknesses and help you
analyze them so that you can glean useful information about what's going on in your network. You can browse a list of the top 100 security tools (based on an informal poll of nmap users) at http://sectools.org. Table 3-4 lists a number of these tools by category. A few of the freely available vulnerability scanners are described in the next few sections. | Table 3-4 Some Popular Computer-Security Testing Tools | | | |--|---|--| | Туре | Names of Tools | | | Port scanners | nmap, Strobe | | | Vulnerability scanners | Nessus Security Scanner, SAINT, SARA,
Whisker (CGI scanner), ISS Internet Scanner,
CyberCop Scanner, Vetescan, Retina Network
Security Scanner | | | Network utilities | Netcat, hping2, Firewalk, Cheops, ntop, ping, ngrep, AirSnort (802.11 WEP encryption-cracking tool) | | | Host-security tools | Tripwire, Isof | | | Packet sniffers | tcpdump, Ethereal, dsniff, sniffit | | | Intrusion detection | Snort, Abacus portsentry, scanlogd, NFR, LIDSSystems (IDSs) | | | Password-checking tools | John the Ripper, LC4 | | | Log analysis and monitoring tools | logcolorise, tcpdstats, nlog, logcheck, LogWatch, Swatch | | #### Book VI Chapter 3 Computer Security Audits and Vulnerability Testing Types #### nmap nmap (short for *network mapper*) is a port-scanning tool. It can rapidly scan large networks and determine what hosts are available on the network, what services they offer, what operating system (and the operating system version) they run, what type of packet filters or firewalls they use, and dozens of other characteristics. You can read more about nmap at http://nmap.org. If nmap is not already installed, you can easily install it on your distribution either with the command apt-get install nmap or through the software search facility of YaST (find nmap) or any distribution-specific interface you may have. If you want to try out nmap to scan your local area network, type a command similar to the following (replace the IP address range with addresses appropriate for your network): nmap -0 -sS 192.168.0.4-8 Here's a typical output listing from that command: Starting nmap 6.40 (http://www.insecure.org/nmap/) at 2013-08-28 16:20 EDT Interesting ports on 192.168.0.4: (The 1659 ports scanned but not shown below are in state: closed) PORT STATE SERVICE 21/tcp open ftp ``` 22/tcp open ssh 111/tcp open rpcbind 631/tcp open ipp MAC Address: 00:C0:49:63:78:3A (U.S. Robotics) Device type: general purpose Running: Linux 3.9.X|3.9.X|3.9.X OS details: Linux 2.4.18 - 2.6.7 Uptime 9.919 days (since Thu Aug 18 18:18:15 2013) . . . Lines deleted . . Nmap finished: 5 IP addresses (5 hosts up) scanned in 30.846 seconds ``` As you can see, nmap displays the names of the open ports and hazards a guess at the operating system name and version number. For a very quick scan of your own machine, you can use the IP address of 127.0.0.1 (as shown in Figure 3-1); hopefully the scan will verify that the ports are closed. ``` ubuntu@ubuntu:~ ubuntu@ubuntu:~$ nmap 127.0.0.1 Starting Nmap 6.00 (http://nmap.org) at 2013-11-22 22:28 UTC Nmap scan report for localhost (127.0.0.1) Host is up (0.000188 latency). Not shown: 999 closed ports PORT STATE SERVICE 631/tcp open lpp Nmap done: 1 IP address (1 host up) scanned in 0.04 seconds ubuntu@ubuntu:~$ ``` #### Figure 3-1: You can view any open ports with nmap. # **Book VII Scripting** # Contents at a Glance | Chapter 1: Introductory Shell Scripting | | |---|-----| | Trying Out Simple Shell Scripts | 445 | | Exploring the Basics of Shell Scripting | | | Chapter 2: Advanced Shell Scripting | 457 | | Trying Out sed | 457 | | Working with awk and sed | | | Final Notes on Shell Scripting | 463 | | Chapter 3: Programming in Linux | 465 | | An Overview of Programming | 465 | | Exploring the Software-Development Tools in Linux | | | Understanding the Implications of GNU Licenses | 484 | # Chapter 1: Introductory Shell Scripting #### In This Chapter - **✓** Trying some simple shell scripts - Discovering the basics of shell scripting - Exploring bash's built-in commands inux gives you many small and specialized commands, along with the plumbing necessary to connect these commands. Take *plumbing* to mean the way in which one command's output can be used as a second command's input. bash (short for Bourne-Again Shell) — the default shell in most Linux systems — provides this plumbing in the form of I/O redirection and pipes. bash also includes features such as the if statement that you can use to run commands only when a specific condition is true, and the for statement that repeats commands a specified number of times. You can use these features of bash when writing programs called *shell scripts* — task-oriented collections of shell commands stored in a file. This chapter shows you how to write simple shell scripts, which are used to automate various tasks. For example, when your Linux system boots, many shell scripts stored in various subdirectories in the /etc directory (for example, /etc/init.d) perform many initialization tasks. # Trying Out Simple Shell Scripts If you're not a programmer, you may feel apprehensive about programming. But shell *scripting* (or programming) can be as simple as storing a few commands in a file. In fact, you can have a useful shell program that has a single command. Shell scripts are popular among system administrators. If you are a system administrator, you can build a collection of custom shell scripts that help you automate tasks you perform often. If a hard drive seems to be getting full, for example, you may want to find all files that exceed some size (say, 1MB) and that have not been accessed in the past 30 days. In addition, you may want to send an e-mail message to all users who have large files, requesting that they archive and clean up those files. You can perform all these tasks with a shell script. You might start with the following find command to identify large files: ``` find / -type f -atime +30 -size +1000k -exec ls -1 \{\} \; > /tmp/largefiles ``` This command creates a file named /tmp/largefiles, which contains detailed information about old files taking up too much space. After you get a list of the files, you can use a few other Linux commands — such as sort, cut, and sed — to prepare and send mail messages to users who have large files to clean up. Instead of typing all these commands manually, place them in a file and create a shell script. That, in a nutshell, is the essence of shell scripts — to gather shell commands in a file so that you can easily perform repetitive system administration tasks. bash scripts, just like most Linux commands, accept command-line options. Inside the script, you can refer to the options as \$1, \$2, and so on. The special name \$0 refers to the name of the script itself. Here's a typical bash script that accepts arguments: ``` #!/bin/sh echo "This script's name is: $0" echo Argument 1: $1 echo Argument 2: $2 ``` The first line runs the /bin/sh program, which subsequently processes the rest of the lines in the script. The name /bin/sh traditionally refers to the Bourne shell — the first Unix shell. In most Linux systems, /bin/sh is a symbolic link to /bin/bash, which is the executable program for bash. Save this simple script in a file named simple and make that file executable with the following command: ``` chmod + x simple ``` Now run the script as follows: ``` ./simple ``` It displays the following output: ``` This script's name is: ./simple Argument 1: Argument 2: ``` The first line shows the script's name. Because you have run the script without arguments, the script displays no values for the arguments. Now try running the script with a few arguments, like this: ``` ./simple "This is one argument" second-argument third ``` This time the script displays more output: ``` This script's name is: ./simple Argument 1: This is one argument Argument 2: second-argument ``` As the output shows, the shell treats the entire string within the double quotation marks as a single argument. Otherwise the shell uses spaces as separators between arguments on the command line. This sample script ignores the third argument because the script is designed to print only the first two arguments. # Exploring the Basics of Shell Scripting Like any programming language, the bash shell supports the following features: - ◆ Variables that store values, including special built-in variables for accessing command-line arguments passed to a shell script and other special values. - **♦** The capability to evaluate expressions. - ◆ Control structures that enable you to loop over several shell commands or to execute some commands conditionally. - ◆ The capability to define functions that can be called in many places within a script. bash also includes many built-in commands that you can use in any script. The next few sections illustrate some of these programming features through simple examples. (It's assumed that you're already running bash, in which case, you can try the examples by typing them at the shell prompt in a terminal window. Otherwise all you have to do is open a terminal window; bash runs and displays its prompt in that window.) # Storing stuff You define variables in bash just as you define environment variables. Thus you may define a variable as follows: ``` count=12 # note no embedded spaces allowed ``` To use a variable's value, prefix the variable's name with a dollar sign (\$). For example, \$PATH is the value of the variable PATH. (This variable is the Book VII Chapter 1 Introductory Shell Scripting famous PATH environment variable that lists all the directories that bash searches when trying to locate an executable file.) To display the value of the variable
count, use the following command: ``` echo $count ``` bash has some special variables for accessing command-line arguments. In a shell script, \$0 refers to the name of the shell script. The variables \$1, \$2, and so on refer to the command-line arguments. The variable \$* stores all the command-line arguments as a single variable, and \$? contains the exit status of the last command the shell executes. From a bash script, you can prompt the user for input and use the read command to read the input into a variable. Here is an example: ``` echo -n "Enter value: " read value echo "You entered: $value" ``` When this script runs, the read value command causes bash to read whatever you type at the keyboard and store your input in the variable called value. **Note:** The -n option prevents the echo command from automatically adding a new line at the end of the string that it displays. # Calling shell functions You can group a number of shell commands that you use consistently into a *function* and assign it a name. Later, you can execute that group of commands by using the single name assigned to the function. Here is a simple script that illustrates the syntax of shell functions: ``` #!/bin/sh hello() { echo -n "Hello, " echo $1 $2 } hello Jane Doe ``` When you run this script, it displays the following output: ``` Hello, Jane Doe ``` This script defines a shell function named hello. The function expects two arguments. In the body of the function, these arguments are referenced by \$1 and \$2. The function definition begins with hello() — the name of the function, followed by parentheses. The body of the function is enclosed in curly braces — $\{\ .\ .\ .\ .\ \}$. In this case, the body uses the echo command to display a line of text. The last line of the example shows how a shell function is called with arguments. In this case, the hello function is called with two arguments: Jane and Doe. The hello function takes these two arguments and prints a line that says Hello, Jane Doe. ## Controlling the flow In bash scripts, you can control the flow of execution — the order in which the commands are executed — by using special commands such as if, case, for, and while. These control statements use the exit status of a command to decide what to do next. When any command executes, it returns an exit status — a numeric value that indicates whether or not the command has succeeded. By convention, an exit status of zero means the command has succeeded. (Yes, you read it right: Zero indicates success!) A nonzero exit status indicates that something has gone wrong with the command. For example, suppose that you want to make a backup copy of a file before editing it with the vi editor. More importantly, you want to avoid editing the file if a backup can't be made. Here's a bash script that takes care of this task: ``` #!/bin/sh if cp "$1" "#$1" then vi "$1" else echo "Failed to create backup copy" fi ``` This script illustrates the syntax of the if-then-else structure and shows how the exit status of the cp command is used by the if command to determine the next action. If cp returns zero, the script uses vi to edit the file; otherwise, the script displays an error message and exits. By the way, the script saves the backup in a file whose name is the same as that of the original, except for a hash mark (#) added at the beginning of the filename. Don't forget the final fi that terminates the if command. Forgetting fi is a common source of errors in bash scripts. You can use the test command to evaluate any expression and to use the expression's value as the exit status of the command. Suppose that you want a script that edits a file only if it already exists. Using test, you can write such a script as follows: ``` #!/bin/sh if test -f "$1" then vi "$1" else echo "No such file" fi ``` Book VII Chapter 1 > Introductory Shell Scripting A shorter form of the test command is to place the expression in square brackets ([. . .]). Using this shorthand notation, you can rewrite the preceding script like this: ``` #!/bin/sh if [-f "$1"] then vi "$1" else echo "No such file" fi ``` *Note:* You must have spaces around the two square brackets. Another common control structure is the for loop. The following script adds the numbers 1 through 10: ``` #!/bin/sh sum=0 for i in 1 2 3 4 5 6 7 8 9 10 do sum='expr $sum + $i' done echo "Sum = $sum" ``` This example also illustrates the use of the $\ensuremath{\mathtt{expr}}$ command to evaluate an expression. The case statement is used to execute a group of commands based on the value of a variable. For example, consider the following script: ``` #!/bin/sh echo -n "What should I do -- (Y)es/(N)o/(C)ontinue? [Y] " read answer case $answer in y | Y | " ") echo "YES" ;; c|C) echo "CONTINUE" ;; n|N) echo "NO" ;; *) echo "UNKNOWN" ;; esac ``` Save this code in a file named confirm and type **chmod** +**x confirm** to make it executable. Then try it out like this: ``` ./confirm ``` When the script prompts you, type one of the characters y, n, or c and press Enter. The script displays YES, NO, or CONTINUE, respectively. For example, here's what happens when you type c (and then press Enter): ``` What should I do -- (Y)es/(N)o/(C) ontinue? [Y] c CONTINUE ``` The script displays a prompt and reads the input you type. Your input is stored in a variable named answer. Then the case statement executes a block of code based on the value of the answer variable. For example, when you type **c**, the following block of commands executes: ``` c|C) echo "CONTINUE" ;; ``` The echo command causes the script to display CONTINUE. From this example, you can see that the general syntax of the case command is as follows: ``` case $variable in value1 | value2) command1 command2 . . . other commands . . . ;; value3) command3 command4 . . . other commands . . . ;; esac ``` Essentially, the case command begins with the word case and ends with esac. Separate blocks of code are enclosed between the values of the variable, followed by a closing parenthesis and terminated by a pair of semicolons (;;). # Exploring bash's built-in commands bash has more than 50 built-in commands, including common commands such as cd and pwd, as well as many others that are used infrequently. You can use these built-in commands in any bash script or at the shell prompt. Table 1-1 describes most of the bash built-in commands and their arguments. After looking through this information, type **help command** to read more Book VII Chapter 1 Introductory Shell Scripting about a specific built-in command. For example, to find out more about the built-in command test, type the following: help test #### Doing so displays the following information: ``` test: test [expr] Exits with a status of 0 (true) or 1 (false) depending on the evaluation of EXPR. Expressions may be unary or binary. Unary expressions are often used to examine the status of a file. There are string operators as well, and numeric comparison operators. File operators: -a FILE True if file exists. -b FILE True if file is block special. -c FILE True if file is character special. -d FILE True if file is a directory. -e FILE True if file exists. -f FILE True if file exists and is a regular file. -g FILE True if file is set-group-id. -h FILE True if file is a symbolic link. -L FILE True if file is a symbolic link. -k FILE True if file has its 'sticky' bit set. -p FILE True if file is a named pipe. -r FILE True if file is readable by you. -s FILE True if file exists and is not empty. -S FILE True if file is a socket. -t FD True if FD is opened on a terminal. -u FILE True if the file is set-user-id. -w FILE True if the file is writable by you. -x FILE True if the file is executable by you. -O FILE True if the file is effectively owned by you. -G FILE True if the file is effectively owned by your group. (. . . Lines deleted . . .) ``` Where necessary, the online help from the help command includes a considerable amount of detail. | Table 1-1 Summary of Built-in Commands in bash Shell | | |--|---| | This Function | Does the Following | | . filename [arguments] | Reads and executes commands from the specified filename using the optional arguments. (Works the same way as the source command.) | | : [arguments] | Expands the <i>arguments</i> but does not process them. | | [expr] | Evaluates the expression $expr$ and returns zero status if $expr$ is true. | | alias
[name[=value]] | Allows one $value$ to equal another. For example, you could set xyz to run bg . | | This Function | Does the Following | |---|--| | bg [<i>job</i>] | Puts the specified <code>job</code> in the background. If no <code>job</code> is specified, it puts the currently executing command in the background. | | break [n] | Exits from a for, while, or until loop. If n is specified, the n th enclosing loop is exited. | | cd [dir] | Changes the current directory to dir. | | command [-pVv] cmd [arg] | Runs the command <i>cmd</i> with the specified arguments (ignoring any shell function named cmd). | | continue [n] | Starts the next iteration of the for, while, or until loop. If n is specified, the next iteration of the nth enclosing loop is started. | | <pre>declare [-frxi] [name[=value]]</pre> | Declares a variable with the specified name and optionally, assigns it a value. | | dirs [-1] [+/-n] | Displays the list of currently remembered directories. | | echo [-neE] [arg] | Displays the arguments, arg , on standard output. | | enable [-n] [-all] | Enables or disables the specified built-
in commands. | | eval [arg] | Concatenates the arguments, arg ,
and executes them as a command. | | exec [command [arguments]] | Replaces the current instance of the shell with a new process that runs the specified command. with the given arguments. | | exit [n] | Exits the shell with the status code n . | | export [-nf] [name[=word]] | Defines a specified environment variable and exports it to future processes. | | fc -s [pat=rep] [cmd] | Re-executes the command after replacing the pattern pat with rep . | | fg [jobspec] | Puts the specified job, <code>jobspec</code> , in the foreground. If no job is specified, it puts the most recent job in the foreground. | Book VII Chapter 1 Introductory Shell Scripting | Remembers the full pathname of a specified command. help [cmd] history [n] Displays help information for specified built-in commands, cmd history [n] Displays past commands or past n commands, if you specify a number n. jobs [-lnp] [jobspec] kill [-s sigspec Evaluates each argument and returns 1 if the last arg is 0. focal [name[=value]] local [name [=value]] popd [+/-n] Removes the specified number of entries from the directory stack. pushd [dir] Adds a specified directory, dir, to the top of the directory. read [-r] [name] Reads a line from standard input and parses it. Marks the specified variables cannot be changed later. | This Function | Does the Following | |---|-----------------------------------|--| | built-in commands, cmd history [n] Displays past commands or past n commands, if you specify a number n. jobs [-lnp] Lists currently active jobs. kill [-s sigspec | hash [-r] [name] | Remembers the full pathname of a | | commands, if you specify a number n. jobs [-lnp] | help [cmd] | Displays help information for specified built-in commands, cmd | | Set | history [n] | Displays past commands or past <i>n</i> commands, if you specify a number <i>n</i> . | | -sigspec] [pid 1 if the last arg is 0. local Creates a local variable with the specified name and value (used in shell functions). logout Exits a login shell. | | Lists currently active jobs. | | [name [=value]] specified name and value (used in shell functions). logout Exits a login shell. popd [+/-n] Removes the specified number of entries from the directory stack. pushd [dir] Adds a specified directory, dir, to the top of the directory stack. pwd Prints the full pathname of the current working directory. read [-r] [name] Reads a line from standard input and parses it. readonly [-f] Marks the specified variables as readonly so that the variables cannot be changed later. return [n] Exits the shell function with the return value n. set Sets various flags. [abefhkmnptuvxldCHP] Sets various flags. [-o option] [arg] Makes the n+1 argument \$1, the n+2 argument \$2, and so on. times Prints the accumulated user and system times for processes run from the shell. trap [-1] [cmd] [sigspec] Executes cmd when the signal | -sigspec] [pid jobspec] let arg | | | Removes the specified number of entries from the directory stack. pushd [dir] Adds a specified directory, dir, to the top of the directory stack. pwd Prints the full pathname of the current working directory. read [-r] [name] Reads a line from standard input and parses it. readonly [-f] [name] Marks the specified variables as readonly so that the variables cannot be changed later. return [n] set [abefhkmnptuvxldCHP] [-o option] [arg] shift [n] Makes the n+1 argument \$1, the n+2 argument \$2, and so on. times Prints the accumulated user and system times for processes run from the shell. trap [-1] [cmd] [sigspec] Executes cmd when the signal | | specified name and value (used in | | entries from the directory stack. pushd [dir] Adds a specified directory, dir, to the top of the directory stack. pwd Prints the full pathname of the current working directory. read [-r] [name] Reads a line from standard input and parses it. readonly [-f] [name] Marks the specified variables as readonly so that the variables cannot be changed later. return [n] set [abefhkmnptuvxldCHP] [-o option] [arg] shift [n] Makes the n+1 argument \$1, the n+2 argument \$2, and so on. times Prints the accumulated user and system times for processes run from the shell. trap [-1] [cmd] [sigspec] Executes cmd when the signal | logout | Exits a login shell. | | top of the directory stack. Prints the full pathname of the current working directory. read [-r] [name] Reads a line from standard input and parses it. readonly [-f] [name] Marks the specified variables as read only so that the variables cannot be changed later. return [n] Exits the shell function with the return value n. Set [abefhkmnptuvxldCHP] [-o option] [arg] shift [n] Makes the n+1 argument \$1, the n+2 argument \$2, and so on. times Prints the accumulated user and system times for processes run from the shell. trap [-1] [cmd] [sigspec] Executes cmd when the signal | popd [+/-n] | | | working directory. read [-r] [name] Reads a line from standard input and parses it. readonly [-f] [name] Marks the specified variables as read only so that the variables cannot be changed later. return [n] set [abefhkmnptuvxldCHP] [-o option] [arg] shift [n] Makes the n+1 argument \$1, the n+2 argument \$2, and so on. times Prints the accumulated user and system times for processes run from the shell. trap [-1] [cmd] [sigspec] Executes cmd when the signal | pushd [dir] | Adds a specified directory, dir, to the top of the directory stack. | | parses it. readonly [-f] | pwd | Prints the full pathname of the current working directory. | | $[name \ . \ . \ . \] \\ changed later. \\ return \ [n] \\ set \\ [abefhkmnptuvxldCHP] \\ [-o \ option] \ [arg \ . \ . \] \\ shift \ [n] \\ makes the \ n+1 argument 1, the \ n+2 argument 2, and so on. \\ times \\ rimes \\ rimes \\ ltrap \ [-1] \ [cmd] \ [sigspec] \\ executes \ cmd \ when the signal$ | read [-r] [name] | The state of s | | | - | | | | return [n] | Exits the shell
function with the return value $\it n$. | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | [abefhkmnptuvxldCHP] | Sets various flags. | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | shift [n] | | | | times | system times for processes run from | | | trap [-1] [cmd] [sigspec] | | | This Function | Does the Following | |--|---| | type [-all] [-type
 -path] name
[name] | Indicates how the shell interprets each name. | | ulimit [-SHacdfmstpnuv [limit]] | Controls resources available to the shell. | | umask [-S] [mode] | Sets the <i>file creation mask</i> — the default permission to the <i>mode</i> specified for the files. | | unalias [-a] [name] | Undefines a specified alias. | | unset [-fv] [name] | Removes the definition of specified variables. | | wait [n] | Waits for a specified process (n represents its PID) to terminate. | Some external programs may have the same name as bash built-in commands. If you want to run any such external program, you have to specify explicitly the full pathname of that program. Otherwise bash executes the built-in command of the same name. Book VII Chapter 1 > Introductory She Scripting # Chapter 2: Advanced Shell Scripting ## In This Chapter - ✓ Trying out the sed command - ✓ Working with the awk and sed commands - ✓ Reading some final notes on shell scripting The preceding chapter introduces you to some of the power available through shell scripting. All the scripts in that chapter are simple bash routines that allow you to run commands and repeat operations a number of times. This chapter builds upon that knowledge by showing how to incorporate two powerful tools — sed and awk — into your scripts. These two utilities move your scripts to the place where the only limit to what you can do becomes your ability to figure out how to ask for the output you need. Although sed is the stream editor and awk is a quick programming language, they complement each other so well that it's not uncommon to use one with the other. The best way to show how these tools work is to walk through some examples. # Trying Out sed The following are sample lines of a colon-delimited employee database that has five fields: unique id number, name, department, phone number, and address. ``` 1218:Kris Cottrell:Marketing:219.555.5555:123 Main Street 1219:Nate Eichhorn:Sales:219.555.5555:1219 Locust Avenue 1220:Joe Gunn:Payables:317.555.5555:21974 Unix Way 1221:Anne Heltzel:Finance:219.555.5555:652 Linux Road 1222:John Kuzmic:Human Resources:219.555.5555:984 Bash Lane ``` This database has been in existence since the beginning of the company and has grown to include everyone who now works, or has ever worked, for the company. A number of proprietary scripts read from the database, and the company cannot afford to be without it. The problem is that the telephone company has changed the 219 prefix to 260, so all entries in the database need to be changed. This is precisely the task for which sed was created. As opposed to standard (interactive) editors, a *stream editor* works its way through a file and makes changes based on the rules it is given. The rule in this case is to change 219 to 260. It's not quite that simple, however, because if you use the command ``` sed 's/219/260/' ``` the result is not completely what you want (changes are in **bold**): ``` 1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street 1260:Nate Eichhorn:Sales:219.555.5555:1219 Locust Avenue 1220:Joe Gunn:Payables:317.555.5555:26074 Unix Way 1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road 1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane ``` The changes in the first, fourth, and fifth lines are correct. But in the second line, the first occurrence of 219 appears in the employee id number rather than in the phone number and was changed to 260. If you wanted to change more than the very first occurrence in a line, you could slap a g (for *global*) into the command: ``` sed 's/219/260/q' ``` That is *not* what you want to do in this case, however, because the employee id number should not change. Similarly, in the third line, a change was made to the address because it contains the value that is being searched for; no change should have been made because the employee does not have the 219 telephone prefix. The first rule of using sed is to identify what makes the location of the string you are looking for unique. If the telephone prefix were encased in parentheses, it would be much easier to isolate. In this database, though, that is not the case; the task becomes a bit more complicated. If you said that the telephone prefix must appear at the beginning of the field (denoted by a colon), the result would be much closer to what you want: ``` sed 's/:219/:260/' ``` Again, bolding has been added to show the changes: ``` 1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street 1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue 1220:Joe Gunn:Payables:317.555.5555:26074 Unix Way 1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road 1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane ``` The accuracy has increased, but there is still the problem of the third line. Because the colon helped to identify the start of the string, it may be tempting to turn to the period to identify the end: ``` sed 's/:219./:260./' ``` But the result still isn't what was hoped for (note the third line): ``` 1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street 1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue 1220:Joe Gunn:Payables:317.555.5555:260.4 Unix Way 1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road 1222.John Kuzmic:Human Resources:260.555.5555:984 Bash Lane ``` Because the period has a special meaning of *any character*, a match is found whether the 219 is followed by a period, a 7, or any other single character. Whatever the character, it is replaced with a period. The replacement side of things isn't the problem; the search needs to be tweaked. By using the \setminus character, we can override the special meaning of the period and specify that you are indeed looking for a period and not any single character: ``` sed 's/:219\./:260./' ``` #### The result becomes: ``` 1218:Kris Cottrell:Marketing:260.555.5555:123 Main Street 1219:Nate Eichhorn:Sales:260.555.5555:1219 Locust Avenue 1220:Joe Gunn:Payables:317.555.5555:21974 Unix Way 1221:Anne Heltzel:Finance:260.555.5555:652 Linux Road 1222:John Kuzmic:Human Resources:260.555.5555:984 Bash Lane ``` And the mission is accomplished. # Working with awk and sed The second example involves a database of books that includes the ISBN number of each title. In the old days, ISBN numbers were ten digits and included an identifier for the publisher and a unique number for each book. ISBN numbers are now thirteen digits for new books. Old books (those published before the first of 2007) have both the old 10-digit and a new 13-digit number that can be used to identify them. For this example, the existing 10-digit number will stay in the database and a new field — holding the ISBN-13 number — will be added to the end of each entry. To come up with the ISBN-13 number for the existing entries in the database, you start with 978, then use the first 9 digits of the old ISBN number. The thirteenth digit is a mathematical calculation (a *check digit*) obtained by doing the following: - 1. Add all odd-placed digits (the first, the third, the fifth, and so on). - **2.** Multiply all even-placed digits by 3 and add them. - 3. Add the total of Step #2 to the total of Step #1. - **4.** Find out what you need to add to round the number up to the nearest 10. This value becomes the thirteenth digit. Book VII Chapter 2 > Advanced She Scripting For example, consider the 10-digit ISBN 0743477103. It first becomes 978074347710, and then the steps work out like this: ``` 1. 9+8+7+3+7+1=35 ``` ``` 2. 7*3=21; 0*3=0; 4*3=12; 4*3=12; 7*3=21; 0*3=0; 21+0+12+12+21+0=66 ``` - **3.** 66+35=101 - **4.** 110-101=9. The ISBN-13 thus becomes 9780743477109. The beginning database resembles: ``` 0743477103:Macbeth:Shakespeare, William 1578518520:The Innovator's Solution:Christensen, Clayton M. 0321349946:(SCTS) Symantec Certified Technical Specialist:Alston, Nik 1587052415:Cisco Network Admission Control, Volume I:Helfrich, Denise ``` And you want the resulting database to change so each line resembles something like this: ``` 0743477103:Macbeth:Shakespeare, William:9780743477109 ``` The example that follows accomplishes this goal. It's not the prettiest thing ever written, but it walks through the process of tackling this problem, illustrating the use of awk and sed. I have also included writing to temporary files so you can examine those files and see the contents at various stages. Clean programming would mitigate the use of temporary files everywhere possible, but that practice also makes it difficult to follow the action at times. That said, here is one solution out of dozens. Read on. ## Step 1: Pull out the ISBN Given the database as it now exists, the first order of business is to pull out the existing ISBN — only the first nine digits because the tenth digit, which was just a checksum, no longer matters — and slap 978 onto the beginning. The nine digits we want are the first nine characters of each line, so we can pull them out by using the cut utility: ``` cut -cle-9 books ``` Because a mathematical operation will be performed on the numbers comprising this value, and that operation works with each digit, I'll add a space between each number and the next in the new entry: ``` sed 's/[0-9]/\& /q' ``` Now it's time to add the new code to the beginning of each entry (the start of every line): ``` sed 's/^/9 7 8 /' ``` And finally, I do an extra step: removing the white space at the end of the line just to make the entry a
bit cleaner: ``` sed 's/ $//' ``` Then I write the results to a temporary file that can be examined to make sure all is working as it should. The full first step then becomes ``` cut -c1-9 books | sed 's/[0-9]/\& /q' | sed 's/^/9 7 8 /' | sed 's/^$//' > isbn2 ``` **Note:** the sed operations could be combined in a script file to increase speed and decrease cycles. However, I am walking through each operation step-by-step to show what's going on, and am not worried about creating script files for this one-time-only operation. Examining the temporary file, the contents are as follows: ``` 9 7 8 0 7 4 3 4 7 7 1 0 9 7 8 1 5 7 8 5 1 8 5 2 9 7 8 0 3 2 1 3 4 9 9 4 9 7 8 1 5 8 7 0 5 2 4 1 ``` ## Step 2: Calculate the 13th digit We've taken care of the first 12 digits of the ISBN number. Now we need to compute those 12 digits to figure out the thirteenth value. Because the numbers are separated by a space, awk can interpret them as fields. The calculation will take several steps: - 1. Add all the odd-placed digits: x=\$1+\$3+\$5+\$7+\$9+\$11. - **2.** Add all the even-placed digits and multiply by 3: y=(\$2+\$4+\$6+\$8+\$10+\$12)*3. - 3. Add the total of Step #2 to the total of Step #1: x=x+y. - **4.** Find out what you need to add to round the number up to the nearest 10 by computing the modulo when divided by 10, and then subtracting it from 10. The following awk command gets everything in place except the transformation: ``` awk '{ x=\$1+\$3+\$5+\$7+\$9+\$11 ; y=\$2+\$4+\$6+\$8+\$10+\$12 ; y=y*3 ; x=x+y ; y=x*10 ; print y }' ``` Everything is finished except subtracting the final result from 10. This is the hardest part. If the modulo is 7, for example, the check digit is 3. If the modulo is 0, however, the check digit does not become 10 (10 - 0), but stays 0. My solution is to use the transform function of sed: ``` sed 'y/12346789/98764321/' ``` Book VII Chapter 2 Advanced Shell Scripting Combining the two operations into one, the second step thus becomes ``` awk '{ x=\$1+\$3+\$5+\$7+\$9+\$11 ; y=\$2+\$4+\$6+\$8+\$10+\$12 ; y=y*3 ; x=x+y ; y=x*10 ; print y }' | sed 'y/12346789/98764321/' > isbn3 ``` Examining the temporary file, the contents are ## Step 3: Add the 13th digit to the other 12 The two temporary files can now be combined to get the correct 13-digit ISBN number. Just as cut was used in the earlier step, paste can be used now to combine the files. The default delimiter for paste is a tab, but we can change that to anything with the -d option. I use a space as the delimiter, and then use sed to strip the spaces (remember that the isbn2 file has spaces between the digits so that they can be read as fields): ``` paste -d" "isbn2 isbn3 | sed 's/ //g' ``` Finally, I want to add a colon as the first character of each entry to make it easier to append the newly computed ISBN to the existing file: ``` sed 's/^/:/' ``` And the entire command becomes ``` paste -d" "isbn2 isbn3 | sed 's/ //g' | sed 's/^/:/' > isbn4 ``` Examining the temporary file, the contents are ``` :9780743477109 :9781578518524 :9780321349941 :9781587052415 ``` ## Step 4: Finish the process The only operation remaining is to append the values in the temporary file to the current database. I'll use the default tab delimiter in the entry, and then strip it out. Technically, I could specify a colon as the delimiter and avoid the last part of the last steps. However, I would rather have my value complete there and be confident that I am stripping characters that don't belong (tabs) instead of running the risk of adding more characters than should be there. The final command is ``` paste books isbn4 | sed 's/\t//g' > newbooks ``` #### The final file looks like this: ``` 0743477103:Macbeth:Shakespeare, William:9780743477109 1578518520:The Innovator's Solution:Christensen, Clayton M.:9781578518524 0321349946:(SCTS) Symantec Certified Technical Specialist:Alston, Nik:9780321349941 1587052415:Cisco Network Admission Control, Volume I:Helfrich, Denise:9781587052415 ``` Again, this result can be accomplished in many ways. This solution is not the cleanest, but it does illustrate the down-and-dirty use of sed and awk. # Final Notes on Shell Scripting As with any other aspect of computing, it takes a while to get used to shell scripting. After you become comfortable writing scripts, however, you'll find that you can automate any number of operations and simplify your task as an administrator. The following tips can be helpful to keep in mind: - ◆ After you create a script, you can run it automatically on a one-time basis by using at, or on a regular basis by using cron. - ◆ You can use conditional expressions, such as if, while, and until, to look for events to occur (such as certain users accessing a file they should not) or to let you know when something that should be there goes away (for example, a file is removed or a user terminates). - ♦ You can set permissions on shell scripts in the same way you set permissions for other files. For example, you can create scripts that are shared by all members of your administrative group (use case to create menus based upon LOGNAME). Book VII Chapter 2 Advanced Shel Scripting # Chapter 3: Programming in Linux ## In This Chapter - **✓** Figuring out programming - **✓** Exploring the software-development tools in Linux - Compiling and linking programs with GCC - **✓** Using make - Debugging programs with gdb - **✓** Understanding the implications of GNU, GPL, and LGPL inux comes loaded with all the tools you need to develop software. (All you have to do is install them.) In particular, it has all the GNU software-development tools, such as GCC (C and C++ compiler), GNU make, and the GNU debugger. Whereas the previous two chapters look at some simple tools and shell scripts, this chapter introduces you to programming, describes the software-development tools, and shows you how to use them. Although I provide examples in the C and C++ programming languages, the focus is not on showing you how to program in those languages but on showing you how to use various software-development tools (such as compilers, make, and debugger). The chapter concludes with a brief explanation of how the Free Software Foundation's GNU General Public License (GPL) may affect any plans you might have to develop Linux software. You need to know about the GPL because you use GNU tools and GNU libraries to develop software in Linux. # An Overview of Programming If you've written computer programs in any programming language, even the shell scripts from the previous two chapters, you can start writing programs on your Linux system quickly. If you've never written a computer program, however, you need two basic resources before you begin to write code: a look at the basics of programming and a quick review of computers and their major parts. This section offers an overview of computer programming — just enough to get you going. At its simplest, a *computer program* is a sequence of instructions for performing a specific task, such as adding two numbers or searching for some text in a file. Consequently, computer programming involves *creating* that list of instructions, telling the computer how to complete a specific task. The exact instructions depend on the programming language that you use. For most programming languages, you have to go through the following steps to create a computer program: 1. Use a text editor to type the sequence of commands from the programming language. This sequence of commands accomplishes your task. This human-readable version of the program is called the *source file* or *source code*. You can create the source file with any application (such as a word processor) that can save a document in plain-text form. Always save your source code as plain text. (The filename depends on the type of programming language.) Word processors can sometimes put extra instructions in their documents that tell the computer to display the text in a particular font or other format. Saving the file as plain text deletes any and all such extra instructions. Trust me, your program is much better off without such stuff. 2. Use a *compiler* program to convert that text file — the source code — from human-readable form into machine-readable *object code*. Typically, this step also combines several object code files into a single machine-readable computer program, something that the computer can run. - 3. Use a special program called a *debugger* to track down any errors and find which lines in the source file might have caused the errors. - 4. Go back to Step 1 and use the text editor to correct the errors, and repeat the rest of the steps. These steps are referred to as the *edit-compile-debug cycle* of programming because most programmers have to repeat this sequence several times before a program works correctly. In addition to knowing the basic programming steps, you also need to be familiar with the following terms and concepts: - ◆ Variables are used to store different types of data. You can think of each variable as being a placeholder for data kind of like a mailbox, with a name and room to store data. The content of the variable is its value. - ◆ Expressions combine variables by using operators. One expression may add several variables; another may extract a part of a string (series of sequential characters). - ◆ Statements perform some action, such as assigning a value to a variable or printing a string. - ◆ Flow-control statements allow statements to execute in various orders, depending on the value of some expression. Typically, flow-control statements include for, do-while, while, and if-then-else statements. ◆ Functions (also called subroutines or routines) allow you to group several statements and give the group a name. You can use functions to execute the same set of statements over and over by invoking the function that represents those statements. Typically, a programming language provides many predefined functions to
perform tasks, such as opening (and reading from) a file. # Exploring the Software-Development Tools in Linux Linux includes the following traditional Unix software-development tools: - ◆ Text editors such as vi and emacs for editing the source code. (To find out more about vi, see Book II, Chapter 6.) - ◆ A C compiler for compiling and linking programs written in C the programming language of choice for writing Unix applications (though nowadays, many programmers are turning to C++ and Java). Linux includes the GNU C and C++ compilers. Originally the GNU C compiler was known as GCC which now stands for *GNU Compiler Collection*. (See a description at http://gcc.gnu.org.) - ◆ The GNU make utility for automating the software build process the process of combining object modules into an executable or a library. (The operating system can load and run an executable; a library is a collection of binary code that can be used by executables.) - ◆ A **debugger** for debugging programs. Linux includes the GNU debugger gdb. - ♦ A version control system to keep track of various revisions of a source file. Linux comes with RCS (Revision Control System) and CVS (Concurrent Versions System). Nowadays, most open source projects use CVS as their version control system, but a recent version control system called Subversion is being developed as a replacement for CVS. You can install these software-development tools in any Linux distribution: - **♦ Xandros:** Usually the tools are installed by default. - **♦ Fedora:** Select the Development Tools package during installation. - ◆ **Debian:** Type apt-get install gcc and then apt-get install libc6-dev in a terminal window. - ◆ SUSE: Choose Main Menu⇒System⇒YaST, click Software on the left side of the window, and then click Install and Remove Software. Type gcc in the search field in YaST, select the relevant packages from the search results, and click Accept to install. If you find any missing packages, you can install them in a similar manner. The next few sections briefly describe how to use these software-development tools to write applications for Linux. Book VII Chapter 3 Programming in Linux ## GNU C and C++ compilers The most important software-development tool in Linux is GCC — the GNU C and C++ compiler. In fact, GCC can compile three languages: C, C++, and Objective-C (a language that adds object-oriented programming capabilities to C). You use the same gcc command to compile and link both C and C++ source files. The GCC compiler supports ANSI-standard C, making it easy to port any ANSI C program to Linux. In addition, if you've ever used a C compiler on other Unix systems, you should feel right at home with GCC. ## **Using GCC** Use the gcc command to invoke GCC. By default, when you use the gcc command on a source file, GCC preprocesses, compiles, and links to create an executable file. However, you can use GCC options to stop this process at an intermediate stage. For example, you might invoke gcc by using the -c option to compile a source file and to generate an object file, but not to perform the link step. Using GCC to compile and link a few C source files is easy. Suppose you want to compile and link a simple program made up of two source files. To accomplish this task, use the following program source code; the task that is stored in the file area.c computes the area of a circle whose radius is specified at the command line: ``` #include <stdio.h> #include <stdlib.h> /* Function prototype */ double area_of_circle(double r); int main(int argc, char **argv) { if(argc < 2) { printf("Usage: %s radius\n", argv[0]); exit(1); } else { double radius = atof(argv[1]); double area = area_of_circle(radius); printf("Area of circle with radius %f = %f\n", radius, area); } return 0; }</pre> ``` You need another file that actually computes the area of a circle. Here's the listing for the circle.c file, which defines a function that computes the area of a circle: ``` #include <math.h> #define SQUARE(x) ((x)*(x)) double area of circle(double r) ``` ``` { return 4.0 * M_PI * SQUARE(r); } ``` For such a simple program, of course, we could place everything in a single file, but this example was contrived a bit to show you how to handle multiple files. To compile these two files and to create an executable file named area, use this command: ``` gcc -o area area.c circle.c ``` This invocation of GCC uses the -o option to specify the name of the executable file. (If you don't specify the name of an output file with the -o option, GCC saves the executable code in a file named a.out.) If you have too many source files to compile and link, you can compile the files individually and generate *object files* (that have the .o extension). That way, when you change a source file, you need to compile only that file — you just link the compiled file to all the object files. The following commands show how to separate the compile and link steps for the sample program: ``` gcc -c area.c gcc -c circle.c gcc -o area area.o circle.o ``` The first two commands run gcc with the -c option compiling the source files. The third gcc command links the object files into an executable named area. ## Compiling C++ programs GNU CC is a combined C and C++ compiler, so the gcc command also can compile C++ source files. GCC uses the file extension to determine whether a file is C or C++. C files have a lowercase <code>.c</code> extension, whereas C++ files end with <code>.C</code> or <code>.cpp</code>. Although the gcc command can compile a C++ file, that command doesn't automatically link with various class libraries that C++ programs typically require. Compiling and linking a C++ program by using the g++ command is easy because it runs gcc with appropriate options. Suppose you want to compile the following simple C++ program stored in a file named hello. C. (Using an uppercase C extension for C++ source files is customary.) ``` #include <iostream> int main() { using namespace std; cout << "Hello from Linux!" << endl; }</pre> ``` Book VII Chapter 3 Programming in Linux To compile and link this program into an executable program named hello, use this command: ``` q++ -o hello hello.C ``` The command creates the hello executable, which you can run as follows: ./hello The program displays the following output: Hello from Linux! A host of GCC options controls various aspects of compiling C and C++ programs. ## Exploring GCC options Here's the basic syntax of the gcc command: gcc options filenames Each option starts with a hyphen (-) and usually has a long name, such as -funsigned-char or -finline-functions. Many commonly used options are short, however, such as -c, to compile only, and -g, to generate debugging information (needed to debug the program by using the GNU debugger, gdb). You can view a summary of all GCC options by typing the following command in a terminal window: man gcc Then you can browse through the commonly used GCC options. Usually, you don't have to provide GCC options explicitly because the default settings are fine for most applications. Table 3-1 lists some of the GCC options you may use. | Table 3-1 | Common GCC Options | |-----------|---| | Option | Meaning | | -ansi | Supports only ANSI-standard C syntax. (This option disables some GNU C-specific features, such as the $_$ asm $_$ and $_$ typeof $_$ keywords.) When used with g++, supports only ISO-standard C++. | | - C | Compiles and generates only the object file. | | -DMACRO | Defines the macro with the string "1" as its value. | | Option | Meaning | |------------------------------|---| | -DMACRO=DEFN | Defines the macro as $\mathtt{DEFN},$ where \mathtt{DEFN} is some text string. | | - E | Runs only the C preprocessor. | | -fallow-single-
precision | Performs all math operations in single precision. | | -fpcc-struct-return | Returns all struct and union values in memory, rather than in registers. (Returning values this way is less efficient, but at least it's compatible with other compilers.) | | -fPIC | Generates position-independent code (PIC) suitable for use in a shared library. | | -freg-struct-return | When possible, returns struct and union values registers. | | -g | Generates debugging information. (The GNU debugger can use this information.) | | -I DIRECTORY | Searches the specified directory for files that you include by using the #include preprocessor directive. | | -L DIRECTORY | Searches the specified directory for libraries. | | -l LIBRARY | Searches the specified library when linking. | | -mcpu= <i>cputype</i> | Optimizes code for a specific processor. (cputype can take many different values — some common ones are i386, i486, i586, i686, pentium, pentiumpro, pentium2, pentium3, pentium4.) | | -o FILE | Generates the specified output file (used to designate the name of an executable file). | | -00 (two zeros) | Does not optimize. | | -0 or -01 (letter 0) | Optimizes the generated code. | | -02 (letter 0) | Optimizes even more. | | -03 (letter 0) | Performs optimizations beyond those done for -02. | | -Os (letter 0) | Optimizes for size (to reduce the total amount of code). | | -pedantic | Generates errors if any non-ANSI-standard extensions are used. | | -pg | Adds extra code to the program so that, when run, this program generates information that the gprof program can use to display timing details for various parts of the program. | Book VII Chapter 3 Programming in Linux | Table 3-1 <i>(continued)</i> | | |------------------------------
---| | Option | Meaning | | -shared | Generates a shared object file (typically used to create a shared library). | | -UMACRO | Undefines the specified macros. | | -A | Displays the GCC version number. | | - W | Doesn't generate warning messages. | | -W1, OPTION | Passes the OPTION string (containing multiple comma-separated options) to the linker. To create a shared library named libXXX.so.1, for example, use the following flag: -Wl, -soname, libXXX.so.1. | ## The GNU make utility When an application is made up of more than a few source files, compiling and linking the files by manually typing the gcc command can get tiresome. Also, you don't want to compile every file whenever you change something in a single source file. These situations are where the GNU make utility comes to your rescue. The make utility works by reading and interpreting a <code>makefile</code>— a text file that describes which files are required to build a particular program as well as how to compile and link the files to build the program. Whenever you change one or more files, <code>make</code> determines which files to recompile — and it issues the appropriate commands for compiling those files and rebuilding the program. ## Makefile names By default, GNU make looks for a makefile that has one of the following names, in the order shown: - **♦** GNUmakefile - ◆ makefile - ♦ Makefile In Unix systems, using Makefile as the name of the makefile is customary because it appears near the beginning of directory listings, where uppercase names appear before lowercase names. When you download software from the Internet, you usually find a Makefile, together with the source files. To build the software, you only have to type **make** at the shell prompt and make takes care of all the steps necessary to build the software. If your makefile doesn't have a standard name (such as Makefile), you have to use the -f option with make to specify the makefile name. If your makefile is called myprogram.mak, for example, you have to run make using the following command line: ``` make -f myprogram.mak ``` #### The makefile For a program made up of several source and header files, the makefile specifies the following: - ◆ The items that make creates usually the object files and the executable. Using the term *target* to refer to any item that make has to create is common. - ◆ The files or other actions required to create the target. - ♦ Which commands to execute to create each target. Suppose that you have a C++ source file named form. C that contains the following preprocessor directive: ``` #include "form.h" // Include header file ``` The object file form.o clearly depends on the source file form.C and the header file form.h. In addition to these dependencies, you must specify how make converts the form.C file to the object file form.o. Suppose that you want make to invoke q++ (because the source file is in C++) with these options: - → -c (compile only) - → -g (generate debugging information) - → -02 (optimize some) In the makefile, you can express these options with the following rule: ``` # This a comment in the makefile # The following lines indicate how form.o depends # on form.C and form.h and how to create form.o. form.o: form.C form.h q++ -c -q -O2 form.C ``` In this example, the first noncomment line shows form.0 as the target and form.C and form.h as the dependent files. The line following the dependency indicates how to build the target from its dependents. This line must start with a tab. Otherwise the make command exits with an error message, and you're left scratching your head because when you look at the makefile in a text editor, you can't tell the difference between a tab and a space. Now that you know the secret, the fix is to replace the space at the beginning of the offending line with a single tab. Book VII Chapter 3 > Programming in Linux The benefit of using make is that it prevents unnecessary compilations. After all, you can run g++ (or gcc) from a shell script to compile and link all the files that make up your application, but the shell script compiles everything, even if the compilations are unnecessary. GNU make, on the other hand, builds a target only if one or more of its dependents have changed since the last time the target was built. make verifies this change by examining the time of the last modification of the target and the dependents. make treats the target as the name of a goal to be achieved; the target doesn't have to be a file. You can have a rule such as this one: ``` clean: rm -f *.o ``` This rule specifies an abstract target named clean that doesn't depend on anything. This dependency statement says that to create the target clean, GNU make invokes the command rm - f *.o, which deletes all files that have the .o extension (namely, the object files). Thus, the effect of creating the target named clean is to delete the object files. #### Variables (or macros) In addition to the basic capability of building targets from dependents, GNU make includes many features that make it easy for you to express the dependencies and rules for building a target from its dependents. If you need to compile a large number of C++ files by using GCC with the same options, for example, typing the options for each file is tedious. You can avoid this repetitive task by defining a variable or macro in make as follows: ``` # Define macros for name of compiler CXX= g++ # Define a macro for the GCC flags CXXFLAGS= -O2 -g -mcpu=i686 # A rule for building an object file form.o: form.C form.h $(CXX) -c $(CXXFLAGS) form.C ``` In this example, CXX and CXXFLAGS are make variables. (GNU make prefers to call them *variables*, but most Unix make utilities call them *macros*.) To use a variable anywhere in the makefile, start with a dollar sign (\$) followed by the variable within parentheses. GNU make replaces all occurrences of a variable with its definition; thus, it replaces all occurrences of \$(CXXFLAGS) with the string -O2 -q -mcpu=i686. GNU make has several predefined variables that have special meanings. Table 3-2 lists these variables. In addition to the variables listed in Table 3-2, GNU make considers all environment variables (such as PATH and HOME) to be predefined variables as well. | Table 3-2 | Some Predefined Variables in GNU make | |-----------|--| | Variable | Meaning | | \$% | Member name for targets that are archives. If the target is libDisp.a(image.o), for example, \$% is image.o. | | \$* | Name of the target file without the extension. | | \$+ | Names of all dependent files with duplicate dependencies, listed in their order of occurrence. | | \$< | The name of the first dependent file. | | \$? | Names of all dependent files (with spaces between the names) that are newer than the target. | | \$@ | Complete name of the target. If the target is libDisp.a image.o), for example, \$@ is libDisp.a. | | \$^ | Names of all dependent files, with spaces between the names.
Duplicates are removed from the dependent filenames. | | AR | Name of the archive-maintaining program (default value: ar). | | ARFLAGS | Flags for the archive-maintaining program (default value: ${\tt rv}$). | | AS | Name of the assembler program that converts the assembly language to object code (default value: as). | | ASFLAGS | Flags for the assembler. | | CC | Name of the C compiler (default value: cc). | | CFLAGS | Flags that are passed to the C compiler. | | CO | Name of the program that extracts a file from RCS (default value: co). | | COFLAGS | Flags for the RCS co program. | | CPP | Name of the C preprocessor (default value: $\$$ (CC) -E). | | CPPFLAGS | Flags for the C preprocessor. | | CXX | Name of the C++ compiler (default value: g++). | | CXXFLAGS | Flags that are passed to the C++ compiler. | | FC | Name of the FORTRAN compiler (default value: £77). | | FFLAGS | Flags for the FORTRAN compiler. | | LDFLAGS | Flags for the compiler when it's supposed to invoke the linker 1d. | | RM | Name of the command to delete a file (Default value: rm -f). | Book VII Chapter 3 Programming in Linux ## A sample makefile You can write a makefile easily if you use the predefined variables of GNU make and its built-in rules. Consider, for example, a makefile that creates the executable xdraw from three C source files (xdraw.c, xviewobj.c, and shapes.c) and two header files (xdraw.h and shapes.h). Assume that each source file includes one of the header files. Given these facts, here is what a sample makefile may look like: This makefile relies on GNU make's implicit rules. The conversion of .c files to .o files uses the built-in rule. Defining the variable CFLAGS passes the flags to the C compiler. The target named all is defined as the first target for a reason — if you run GNU make without specifying any targets in the command line (see the make syntax described in the following section), the command builds the first target it finds in the makefile. By defining the first target all as xdraw, you can ensure that make builds this executable file, even if you don't explicitly specify it as a target. Unix programmers traditionally use all as the name of the first target, but the target's name is immaterial; what matters is that it's the first target in the makefile. #### How to run make Typically you run make by simply typing the following command at the shell prompt: make When run this way, GNU make looks for a file named GNUmakefile, makefile, or Makefile — in that order. If make finds one of these makefiles, it builds the first target specified in that makefile. However, if make doesn't find an appropriate makefile, it displays the following error message and
exits: ``` make: *** No targets specified and no makefile found. Stop. ``` If your makefile happens to have a different name from the default names, you have to use the -f option to specify the makefile. The syntax of the make command with this option is ``` make -f filename ``` where filename is the name of the makefile. Even when you have a makefile with a default name such as Makefile, you may want to build a specific target out of several targets defined in the makefile. In that case, you have to use the following syntax when you run make: make target For example, if the makefile contains the target named clean, you can build that target with this command: make clean Another special syntax overrides the value of a make variable. For example, GNU make uses the CFLAGS variable to hold the flags used when compiling C files. You can override the value of this variable when you invoke make. Here's an example of how you can define CFLAGS as the option -q -O2: make CFLAGS="-g -02" In addition to these options, GNU make accepts several other command-line options. Table 3-3 lists the GNU make options. | Table 3-3 | Options for GNU make | |---------------|--| | Option | Meaning | | -b | Ignores the variable given but accepts that variable for compatibility with other versions of make. | | -C DIR | Changes to the specified directory before reading the makefile. | | -d | Prints debugging information. | | -e | Allows environment variables to override definitions of similarly named variables in the makefile. | | -f FILE | Reads FILE as the makefile. | | -h | Displays the list of make options. | | -i | Ignores all errors in commands executed when building a target. | | -I DIR | Searches the specified directory for included makefiles. (The capability to include a file in a makefile is unique to GNU make.) | | -j <i>NUM</i> | Specifies the number of commands that make can run simultaneously. | | -k | Continues to build unrelated targets, even if an error occurs when building one of the targets. | | -l LOAD | Doesn't start a new job if load average is at least ${\it LOAD}$ (a floating-point number). | Book VII Chapter 3 Programming in Linux (continued) | Table 3-3 (continued) | | |-----------------------|---| | Option | Meaning | | -m | Ignores the variable given but accepts that variable for compatibility with other versions of $\mathtt{make}. \\$ | | -n | Prints the commands to execute but does not execute them. | | -o FILE | Does not rebuild the file named \it{FILE} , even if it is older than its dependents. | | -p | Displays the make database of variables and implicit rules. | | -q | Does not run anything, but returns 0 (zero) if all targets are up to date, 1 if anything needs updating, or 2 if an error occurs. | | -r | Gets rid of all built-in rules. | | -R | Gets rid of all built-in variables and rules. | | - S | Works silently (without displaying the commands as they execute). | | -t | Changes the timestamp of the files. | | -A | Displays the version number of make and a copyright notice. | | - W | Displays the name of the working directory before and after processing the makefile. | | -W FILE | Assumes that the specified file has been modified (used with $-n$ to see what happens if you modify that file). | # The GNU debugger Although make automates the process of building a program, that part of programming is the least of your worries when a program doesn't work correctly or when a program suddenly quits with an error message. You need a debugger to find the cause of program errors. Linux includes gdb — the versatile GNU debugger with a command-line interface. Like any debugger, gdb lets you perform typical debugging tasks, such as the following: - ♦ Set a breakpoint so that the program stops at a specified line. - ♦ Watch the values of variables in the program. - ◆ Step through the program one line at a time. - ◆ Change variables in an attempt to correct errors. The qdb debugger can debug C and C++ programs. ## Preparing to debug a program If you want to debug a program by using gdb, you have to ensure that the compiler generates and places debugging information in the executable. The debugging information contains the names of variables in your program and the mapping of addresses in the executable file to lines of code in the source file. gdb needs this information to perform its functions, such as stopping after executing a specified line of source code. To make sure that the executable is properly prepared for debugging, use the -g option with GCC. You can do this task by defining the variable CFLAGS in the makefile as CFLAGS= -q ### Running gdb The most common way to debug a program is to run gdb by using the following command: ``` gdb progname ``` progname is the name of the program's executable file. After progname runs, gdb displays the following message and prompts you for a command: You can type gdb commands at the (gdb) prompt. One useful command, help, displays a list of commands, as the next listing shows: ``` (gdb) help List of classes of commands: aliases -- Aliases of other commands breakpoints -- Making program stop at certain points data -- Examining data files -- Specifying and examining files internals -- Maintenance commands obscure -- Obscure features running -- Running the program stack -- Examining the stack status -- Status inquiries support -- Support facilities tracepoints -- Tracing of program execution without stopping the program user-defined -- User-defined commands ``` Book VII Chapter 3 > Programmin in Linux ``` Type "help" followed by a class name for a list of commands in that class. Type "help all" for the list of all commands. Type "help" followed by command name for full documentation. Command name abbreviations are allowed if unambiguous. (gdb) ``` To quit gdb, type q and then press Enter. gdb has a large number of commands, but you need only a few to find the cause of an error quickly. Table 3-4 lists the commonly used gdb commands. | Table 3-4 | Common gdb Commands | |---------------------|--| | This Command | Does the Following | | break NUM | Sets a breakpoint at the specified line number, NUM. (The debugger stops at breakpoints.) | | bt | Displays a trace of all stack frames. (This command shows you the sequence of function calls so far.) | | clear FILENAME: NUM | Deletes the breakpoint at a specific line number,
NUM, in the source file FILENAME. For exam-
ple, clear xdraw.c:8 clears the breakpoint
at line 8 of file xdraw.c. | | continue | Continues running the program being debugged. (Use this command after the program stops due to a signal or breakpoint.) | | display EXPR | Displays the value of an expression, $EXPR$ (consisting of variables defined in the program) each time the program stops. | | file FILE | Loads the specified executable file, FILE, for debugging. | | help NAME | Displays help on the command named NAME. | | info break | Displays a list of current breakpoints, including information on how many times each breakpoint is reached. | | info files | Displays detailed information about the file being debugged. | | info func | Displays all function names. | | info local | Displays information about local variables of the current function. | | info prog | Displays the execution status of the program being debugged. | | info var | Displays all global and static variable names. | | | | | | n / 5 H / | |---------------------------|--| | This Command | Does the Following | | kill | Ends the program you're debugging. | | list | Lists a section of the source code. | | make | Runs the make utility to rebuild the executable without leaving gdb. | | next | Advances one line of source code in the current function without stepping into other functions. | | print EXPR | Shows the value of the expression EXPR. | | quit | Quits gdb. | | run | Starts running the currently loaded executable. | | set variable
VAR=VALUE | Sets the value of the variable VAR to VALUE. | | shell CMD | Executes the Unix command $\ensuremath{\textit{CMD}}$, without leaving gdb. | | step | Advances one line in the current function, stepping into other functions, if any. | | watch VAR | Shows the value of the variable named $\it VAR$ whenever the value changes. | | where | Displays the call sequence. Use this command to locate where your program died. | | x/F ADDR | Examines the contents of the memory location at address $ADDR$ in the format specified by the letter F , which can be \circ (octal), \times (hex), d (decimal), u (unsigned decimal), t (binary), f (float), f (address), f (instruction), f (char), or f (string). You can append a letter indicating the size of data type to the format letter. Size letters are f (byte), f (halfword, 2 bytes), f (word, 4 bytes), and f (giant, 8 bytes). Typically, f (address) is the name of a variable or pointer. | #### Book VII Chapter 3 Programming in Linux ## Finding bugs by using gdb To understand how you can find bugs by using gdb, you need to see an example. The procedure is
easiest to show with a simple example, so the following, dbgtst.c, is a contrived program that contains a typical bug. ``` #include <stdio.h> static char buf[256]; void read_input(char *s); int main(void) { char *input = NULL; /* Just a pointer, no storage for string */ read_input(input); ``` ``` /* Process command. */ printf("You typed: %s\n", input); /* . . . _*/ return 0; } void read_input(char *s) { printf("Command: "); gets(s); } ``` This program's main function calls the <code>read_input</code> function to get a line of input from the user. The <code>read_input</code> function expects a character array in which it returns what the user types. In this example, however, <code>main</code> calls <code>read_input</code> with an uninitialized pointer — that's the bug in this simple program. Build the program by using gcc with the -g option: ``` gcc -g -o dbgtst dbgtst.c ``` Ignore the warning message about the gets function being dangerous; I'm trying to use the shortcoming of that function to show how you can use gdb to track down errors. To see the problem with this program, run it and type test at the Command: prompt: ``` ./dbgtst Command: test Segmentation fault ``` The program dies after displaying the Segmentation fault message. For such a small program as this one, you can probably find the cause by examining the source code. In a real-world application, however, you may not immediately know what causes the error. That's when you have to use gdb to find the cause of the problem. To use gdb to locate a bug, follow these steps: #### 1. Load the program under gdb. For example, type gdb dbgtst to load a program named dbgtst in qdb. # 2. Start executing the program under gdb by typing the run command. When the program prompts for input, type some input text. The program fails as it did previously. Here's what happens with the dbgtst program: ``` (gdb) run Starting program: /home/edulaney/swdev/dbgtst Command: test Program received signal SIGSEGV, Segmentation fault. 0x400802b6 in gets () from /lib/tls/libc.so.6 (gdb) ``` #### 3. Use the where command to determine where the program died. For the dbgtst program, this command yields this output: ``` (gdb) where #0 0x400802b6 in gets () from /lib/tls/libc.so.6 #1 0x08048474 in read_input (s=0x0) at dbgtst.c:16 #2 0x08048436 in main () at dbgtst.c:7 (gdb) ``` The output shows the sequence of function calls. Function call #0 — the most recent one — is to the gets C library function. The gets call originates in the read_input function (at line 16 of the file dbgtst.c), which in turn is called from the main function at line 7 of the dbgtst.c file. #### 4. Use the list command to inspect the lines of suspect source code. In dbgtst, you may start with line 16 of dbgtst.c file, as follows: ``` (gdb) list dbgtst.c:16 11 return 0; 12 } 13 void read_input(char *s) 14 { 15 printf("Command: "); 16 gets(s); 17 } 18 (gdb) ``` After looking at this listing, you can tell that the problem may be the way read_input is called. Then you list the lines around line 7 in dbgtst.c (where the read_input call originates): ``` (gdb) list dbgtst.c:7 2 static char buf[256]; 3 void read_input(char *s); 4 int main(void) 5 { 6 char *input = NULL; /* Just a pointer, no storage for string */ 7 read_input(input); 8 /* Process command. */ 9 printf("You typed: %s\n", input); 10 /* . . . */ 11 return 0; (qdb) ``` At this point, you can narrow the problem to the variable named input. That variable is an array, not a NULL (which means zero) pointer. ## Fixing bugs in gdb Sometimes you can fix a bug directly in gdb. For the example program in the preceding section, you can try this fix immediately after the program dies after displaying an error message. An extra buffer named buf is defined in the dbgtst program, as follows: ``` static char buf[256]; ``` Book VII Chapter 3 Programming in Linux We can fix the problem of the uninitialized pointer by setting the variable input to buf. The following session with gdb corrects the problem of the uninitialized pointer. (This example picks up immediately after the program runs and dies, due to the segmentation fault.) ``` (gdb) file dbgtst A program is being debugged already. Kill it? (y or n) y Load new symbol table from "/home/edulaney/sw/dbgtst"? (y or n) y Reading symbols from /home/edulaney/sw/dbgtst . . . done. (gdb) list 1 #include <stdio.h> 2 static char buf[256]; 3 void read input(char *s); 4 int main(void) 6 char *input = NULL; /* Just a pointer, no storage for string */ 7 read input(input); 8 /* Process command. */ 9 printf("You typed: %s\n", input); 10 /* . . . */ (qdb) break 7 Breakpoint 2 at 0x804842b: file dbgtst.c, line 7. (adb) run Starting program: /home/edulaney/sw/dbgtst Breakpoint 1, main () at dbgtst.c:7 7 read input(input); (gdb) set var input=buf (gdb) cont Continuing. Command: test You typed: test Program exited normally. (qdb)q ``` As the preceding listing shows, if the program is stopped just before read_input is called and the variable named input is set to buf (which is a valid array of characters), the rest of the program runs fine. After finding a fix that works in gdb, you can make the necessary changes to the source files and make the fix permanent. # Understanding the Implications of GNU Licenses You have to pay a price for the bounty of Linux. To protect its developers and users, Linux is distributed under the GNU GPL (General Public License), which stipulates the distribution of the source code. The GPL doesn't mean, however, that you can't write commercial software for Linux that you want to distribute (either for free or for a price) in binary form only. You can follow all the rules and still sell your Linux applications in binary form. When writing applications for Linux, be aware of two licenses: - ◆ The GNU General Public License (GPL), which governs many Linux programs, including the Linux kernel and GCC - ◆ The GNU Library General Public License (LGPL), which covers many Linux libraries The following sections provide an overview of these licenses and some suggestions on how to meet their requirements. Don't take anything in this book as legal advice. Instead, you should read the full text for these licenses in the text files on your Linux system, and then show these licenses to your legal counsel for a full interpretation and an assessment of their applicability to your business. #### The GNU General Public License The text of the GNU General Public License (GPL) is in a file named COPYING in various directories in your Linux system. For example, type the following command to find a copy of that file in your Linux system for various items: ``` find /usr -name "COPYING" -print ``` After you find the file, you can change to that directory and type more COPYING to read the GPL. These are examples of the license accompanying code, and you can find other examples at http://www.gnu.org/copyleft/gpl.html. The GPL has nothing to do with whether you charge for the software or distribute it for free; its thrust is to keep the software free for all users. GPL requires that the software be distributed in source-code form, and stipulates that any user can copy and distribute the software in source-code form to anyone else. In addition, everyone is reminded that the software comes with absolutely no warranty. The software that the GPL covers isn't in the public domain. Software covered by GPL is always copyrighted, and the GPL spells out the restrictions on the software's copying and distribution. From a user's point of view, of course, GPL's restrictions aren't really restrictions; the restrictions are benefits because the user is guaranteed access to the source code. If your application uses parts of any software that the GPL covers, your application is considered a *derived work*, which means that your application is also covered by the GPL and you must distribute the source code to your application. Book VII Chapter 3 Programming in Linux Although the GPL covers the Linux kernel, the GPL doesn't cover your applications that use the kernel services through system calls. Those applications are considered normal use of the kernel. If you plan to distribute your application in binary form (as most commercial software is distributed), you must make sure that your application doesn't use any parts of any software the GPL covers. Your application may end up using parts of other software when it calls functions in a library. Most libraries, however, are covered by a different GNU license, which is described in the next section. You have to watch out for only a few of the library and utility programs that the GPL covers. The GNU dbm (gdbm) database library is one of the prominent libraries that GPL covers. The GNU bison parser-generator tool is another utility that the GPL covers. If you allow bison to generate code, the GPL covers that code. Other alternatives for the GNU dbm and GNU bison aren't covered by GPL. For a database library, you can use the Berkeley database library db in place of gdbm. For a parser-generator, you may use yacc instead of bison. #### The GNU Library General Public License The text of the GNU Library General Public License (LGPL) is in a file named COPYING. LIB. If you have the kernel source installed, a copy of COPYING. LIB file is in one of the source directories. To locate a copy of the COPYING. LIB file on your Linux system, type the following command in a terminal window: ``` find /usr -name "COPYING*" -print ``` This command lists all occurrences of COPYING and COPYING.LIB in your system. The COPYING file contains the GPL, whereas COPYING.LIB has the LGPL. The LGPL is intended to allow use of libraries in your applications, even if you don't distribute source code for your application. The LGPL stipulates, however, that users must have access to the source code of the library you use — and that users can make use of modified versions of those libraries. The LGPL covers most Linux libraries, including
the C library (libc.a). Thus, when you build your application on Linux by using the GCC compiler, your application links with code from one or more libraries that the LGPL covers. If you want to distribute your application in only binary form, you need to pay attention to LGPL. One way to meet the intent of the LGPL is to provide the object code for your application and a makefile that relinks your object files with any updated Linux libraries the LGPL covers. A better way to satisfy the LGPL is to use *dynamic linking*, in which your application and the library are separate entities, even though your application calls functions that reside in the library when it runs. With dynamic linking, users immediately get the benefit of any updates to the libraries without ever having to relink the application. The newest version of the license is GPLv3 and a Quick Guide to it can be found at: http://www.gnu.org/licenses/quick-guide-gplv3.html. Book VII Chapter 3 Programming in Linux # **Book VIII Linux Certification** #### Contents at a Glance | Chapter 1: Studying for the Linux Essentials Certification Exa | ım491 | |---|-------| | Overview of Linux Essentials | 491 | | The Linux Community and a Career in Open Source | 492 | | Using the Command Line to Get Help | | | The Power of the Command Line | | | The Linux Operating System | 496 | | Security and File Permissions | 498 | | Chapter 2: Studying for the CompTIA Linux+ Powered by | | | LPI Certification Exams | 501 | | Overview of the CompTIA Linux+ Exams | 501 | | System Architecture | | | Linux Installation and Package Management | 503 | | GNU and Unix Commands | 505 | | Devices, Linux File systems, Filesystem Hierarchy Standard | 507 | | Shells, Scripting, and Data Management | 509 | | User Interfaces and Desktops | 510 | | Administrative Tasks | 511 | | Essential System Services | 512 | | Networking Fundamentals | | | Security | 515 | | Chapter 3: Other Linux Certifications | 517 | | Vendor-Neutral Certifications | 517 | | Vendor-Specific Certifications | 518 | ## Chapter 1: Studying for the Linux Essentials Certification Exam #### In This Chapter - **✓** Getting an overview of the Linux Essentials Exam - ✓ Looking at the details of each domain ust as there are many levels of degree attainment you can achieve through an educational institution (associate's degree, bachelor's, master's, doctorate), there are multiple levels of Linux certification available. This book is written primarily for the Linux+ certification from CompTIA and the LPI LX0-101 and LX0-102 exams. As such, it covers everything you need to know to study and pass LPI's lower-level certification, known as Linux Essentials. The following sections provide an overall look at the exam, and then explore the topics beneath each of the domains. #### Overview of Linux Essentials The Linux Essentials Certificate of Achievement was created by the Linux Professional Institute (LPI) to appeal to the academic sector. Students taking classes in Linux may not get through all the topics necessary to pass the two exams (LX0-101 and LX0-102) to gain the Level 1 certification, but LPI still wanted to recognize and authenticate their knowledge. This program was created through international collaboration with a classroom focus in mind. As of this writing, the program is live in Europe, the Middle East, and Africa, with plans to roll out to other regions in the near future. Linux Essentials is a certificate of achievement, intended to be a much lower-level (subset) certification than the Level 1 certification. Although Linux Essentials is recommended, it's not required for any of the LPIC professional certifications. There are five domains (called Topics) on the exam; Table 1-1 shows them, along with the weighting for each. | Table 1-1 | Table 1-1 Domains on the Linux Essen | | | | | |------------------------------------|--------------------------------------|-----------|--|--|--| | Торіс | | Weighting | | | | | The Linux Commu | nity and a Career in Open Source | 7 | | | | | Finding Your Way on a Linux System | | 8 | | | | | The Power of the Command Line | | 10 | | | | | The Linux Operatir | 8 | | | | | | Security and File Permissions | | 7 | | | | | | | | | | | The sections that follow look at each of these topics in more detail. #### The Linux Community and a Career in Open Source Table 1-2 shows the subtopics, weight, description, and key knowledge areas for this topic. | Table 1-2 | | Breakout of Topic | 1 | |---|--------|--|--| | Subtopic | Weight | Description | Key Areas | | Linux Evolution
and Popular
Operating
Systems | 2 | Knowledge of Linux
development and
major distributions | Open source philos-
ophy; distributions;
embedded systems | | Major Open
Source
Applications | 2 | Awareness of major
applications and
their uses | Desktop applications; server applications; mobile applications; development languages; package management tools and repositories | | Understanding
Open Source
Software and
Licensing | 1 | Open communities
and licensing Open
Source Software for
business | Licensing;
Free Software
Foundation (FSF),
Open Source
Initiative (OSI) | | ICT Skills and
Working in
Linux | 2 | Basic Information
and Communication
Technology (ICT)
skills and working in
Linux | Desktop skills;
getting to the com-
mand line; industry
uses of Linux, cloud
computing and
virtualization | To adequately address these topics, focus on these files, terms, and utilities: Android; Apache; Audacity; Blender; BSD; C; CentOS; Creative Commons; Debian; DHCP; DNS; Firefox; FLOSS; FOSS; Gimp; GPR; ImageMagick; Libre-Office; MySQL; NFS; OpenLDAP; OpenOffice.org; Password issues; Perl; PHP; Python; Postfix; PostgreSQL; Privacy issues and tools; Samba; Shell; Terminal and Console; and Thunderbird. In addition, focus on these topics: Use of common open source applications in presentations and projects; using a browser; privacy concerns; configuration options; searching the web; and saving content. Here are the top ten items to know as you study for this domain: - 1. Linux is the best-known example of open source software so far developed (and still in development). - 2. The shell is the command interpreter that resides between the user and the operating system. While a number of shells are available, the most common today is the bash shell. - **3.** A plethora of applications and tools is available for use with the various Linux distributions. Many of these tools are also open source. - **4.** The Apache Software Foundation distributes open source software under the Apache license that is Free and Open Source (FOSS). - **5.** The Free Software Foundation (FSF) supports the free (open source) software movement and copyleft under the GNU General Public License. *Copyleft* makes it possible for modifications to be made to software while preserving the same rights in the produced derivatives. - **6.** The Open Source Initiative (OSI) also supports the open source software movement, as does the GNOME Foundation, Ubuntu Foundation, and many other organizations. - **7.** OpenOffice.org was a popular suite of open source office productivity software. LibreOffice is a fork of OpenOffice that has eclipsed it in popularity. - Samba makes it possible for Linux systems to share files with Windowsbased systems. - **9.** Thunderbird is a popular mail and news client originally created by the Mozilla Foundation. - 10. A number of web browsers are available for Linux. The most popular currently is Firefox. #### Book VIII Chapter 1 Studying for the Linux Essentials Certification Exam #### Using the Command Line to Get Help Table 1-3 shows the subtopics, weight, description, and key knowledge areas for this topic. | Table 1-3 | | Breakout of Topic | 2 | |--|--------|---|---| | Subtopic | Weight | Description | Key Areas | | Command Line
Basics | 2 | Basics of using the
Linux command line | Basic shell;
Formatting com-
mands; Working
with options;
Variables; Globbing;
Quoting | | Using the
Command Line to
Get Help | 2 | Running help com-
mands and naviga-
tion of the various
help systems | manfiles; info
command | | Using Directories
and Listing Files | 2 | Navigation of home
and system directo-
ries and listing files
in various locations | Files, directories;
hidden files and
directories; home
directory; absolute
and relative paths | | Creating,
Moving, and
Deleting Files | 2 | Create, move, and delete files under the home directory | Files and directo-
ries; case sensitiv-
ity; simple globbing
and quoting | To adequately address these topics, focus on these files, terms, and utilities: &&; . and ..; /usr/share/doc; ||; apropos; cd; common options for ls; cp; echo; history; Home and ~; info; locate; man; man pages; mkdir; mv; PATH env variable; recursive listings; rm; rmdir; substitutions; touch; whatis; whereis; and which. Here are the top ten items to know as you study for this domain: - 1. Regular expressions often referred to as *globbing* can be used with the shells available in Linux to match wildcard characters. Among the possible wildcards, the asterisk (*) will match any number of characters; the question mark (?) will match only one character. - **2.** Linux is a case-sensitive
operating system. - **3.** Files can be "hidden" by preceding their names with a single period (.). In pathnames, however, a single period (.) specifies this directory and two periods (..) signifies the parent directory. - 4. Absolute paths give the full path to a resource, while relative paths give directions from where you are currently working. An example of an absolute path would be /tmp/eadulaney/file whereas a relative link would be . . /file. - 5. Files can be copied using cp or moved using mv. Files can be deleted with rm and directories (which are created with mkdir) can be removed with rmdir. Recursive deletion can be done with rm -r. - 6. To change directories, use the cd command. When used without parameters, this will move you to your home directory. To see what directory you are presently working in, us the pwd (present working directory) command. - 7. The 1s command has a plethora of options to allow you to list files. The -a option will list all (including hidden) files. - **8.** Help is available through the manual pages (accessed with the man command) and info (which shows help files stored beneath /user/info). - **9.** The whatis command shows what manual pages are available for an entry while whereis shows the location of the file and all related files (including any manual pages). - 10. Many standard utilities allow you to enter the name of the executable followed by "--help" to obtain help only on the syntax. #### The Power of the Command Line Table 1-4 shows the subtopics, weight, description, and key knowledge areas for this topic. | Table 1-4 | -4 Breakout of Topic 3 | | | |--|------------------------|--|---| | Subtopic | Weight | Description | Key Areas | | Archiving Files on the Command Line | 2 | Archiving files in the user home directory | Files, directo-
ries; archives,
compression | | Searching and
Extracting Data from
Files | 4 | Search and extract
data from files in the
home directory | Command
line pipes; I/O
re-direction | | Turning Commands
into a Script | 4 | Turning repetitive commands into simple scripts | Basic text edit-
ing; basic shell
scripting | To adequately address these topics, focus on the following files, terms, and utilities: /bin/sh; arguments; bash; bzip2; case; common tar options; cut; exit status; extracting individual files from archives; find; for loops; grep; gzip; head; if; less; nano; Partial POSIX Basic Regular Expressions Book VIII Chapter 1 Studying for the Linux Essentials Certification Exam ([^],^,\$); Partial POSIX Extended Regular Expressions (+,(),|); pico; read; sort; tail; tar; test; unzip; variables; vi; wc; while; xargs; and zip. Here are the top ten items to know as you study for this domain: - 1. Standard input (stdin) is traditionally the keyboard and standard output (stdout) is traditionally the monitor. Both can be redirected, as can standard error (stderr) using the symbols >, >>, <, and |. - **2.** Commands can be joined on the command line by the semicolon (;) and each command will run independent of each other. You can also use the pipe (|) to send the output of one command as the input of another command. - 3. The cut command can pull fields from a file and they can be combined using either paste or join. The latter offers more features than the former and can be used with conditions. - The wc command can count the number of lines, words, and characters in a file. - **5.** The grep utility (and its counterparts egrep and fgrep) can be used to find matches for strings within files. - 6. The find command can be used to search the system for files/directories that meet any number of criteria. When these entities are found, the xargs command can be used to look deeper within them for other values (such as in conjunction with grep). - 7. You can use the tar command (which can combine multiple files into a single archive) to do backups. - **8.** In addition to archiving, you can also compress files with the gzip or pack commands. To uncompress files, use uncompress, gunzip, or unpack. - **9.** Variables can be given at the command line and referenced as \$1, \$2, and so on, or entered into the executing file with the read command. - 10. Logic can be added to scripts by testing conditions with test or [. Commands can execute using if-then-fi deviations or through looping (while, until, or for). You can use the exit command to leave a script or use break to leave a loop. #### The Linux Operating System Table 1-5 shows the subtopics, weight, description, and key knowledge areas for this topic. | Table 1-5 | ! | Breakout of Topic 4 | | |------------------------------------|--------|--|---| | Subtopic | Weight | Description | Key Areas | | Choosing an
Operating System | 1 | Knowledge of
major operating
systems and Linux
distributions | Windows, Mac,
Linux differ-
ences; distribu-
tion lifecycle
management | | Understanding
computer hardware | 2 | Familiarity with the components that go into building desktop and server computers | Hardware | | Where Data is
Stored | 3 | Where various
types of informa-
tion are stored on a
Linux system | Kernel; processes; syslog; klog;dmesg; /lib;/usr/ lib;/etc/; /var/log | | Your Computer on
the Network | 2 | Querying vital networking settings and determining the basic requirements for a computer on a local area network (LAN) | Internet; net-
work; routers;
Domain Name
Service;
network
configuration | To adequately address these topics, focus on the following files, terms, and utilities: desktop configuration (GUI versus command line); dig; display types; drivers; free; hard drives and partitions; ifconfig; IPv4; IPv6; libraries; maintenance cycles (beta and stable); memory addresses; motherboards; netstat; optical drives; peripherals; ping; power supplies; processes and process tables; processors; system messaging and logging; programs; packages and package databases; ps; resolv.conf; route; ssh; system configuration; and top. Here are the top ten items to know as you study for this domain: - 1. When run, every command spans at least one process; processes can be viewed with ps or top (which updates the display dynamically). - **2.** Jobs can run in the foreground or background and be moved between the two. Jobs running in the foreground can be suspended by pressing Ctrl+Z. Book VIII Chapter 1 Studying for the Linux Essentials Certification Exam - **3.** IPv4 uses 32-bit addresses, each divided into four octets. The first octet identifies the class of address (A, B, C). The address can be public or private. - **4.** The ifconfig utility can be used to see the current IP configuration of the network cards. - **5.** The ping utility is an all-purpose tool for testing connectivity. It sends echo messages to a specified host to see whether that host can be reached. You can use ping with the loopback address (127.0.0.1) to test internal configuration. - **6.** The route utility displays the routing table and allows you to configure it. - 7. The netstat utility shows the current status of ports those that are open, listening, and so on. - 8. The system log is /var/log/messages and this is where the majority of events are written to by the system log daemon (syslogd). Messages routed there can be viewed with the dmesg command. - **9.** The logrotate command can be used to automatically archive log files and perform maintenance as configured in /etc/syslog.conf. - **10.** You can manually write entries to log files using the logger command. #### Security and File Permissions Table 1-6 shows the subtopics, weight, description, and key knowledge areas for this topic. | Table 1-6 | | Breakout of Topic 5 | | |---|--------|---|---| | Subtopic | Weight | Description | Key Areas | | Basic Security and
Identifying User
Types | 2 | Various types of
users on a Linux
system | Root and stan-
dard users;
system users | | Creating Users and
Groups | 2 | Creating users and
groups on a Linux
system | User and group
commands; user
IDs | | Managing Files
Permissions and
Ownership | 2 | Understanding and
manipulating file
permissions and
ownership settings | File/directory
permissions and
owners | | Special Directories and Files | 1 | Special directories
and files on a Linux
system, including
special permissions | System files;
libraries; sym-
bolic links | To adequately address these topics, focus on the following files, terms, and utilities: /etc; /etc/group; /etc/passwd; /etc/shadow; /tmp; /var; /var/tmp; chgrp; chmod; chown; groupadd; groupdel; groupmod; hard links; id; last; ls -d; ls -l; ls -s; passwd; setgid; setuid; sticky bit; su; sudo; useradd; userdel; usermod; w; and who. Here are the top ten items to know as you study for this domain: - 1. File and directory permissions can be changed with the chmod command (which accepts numeric and symbolic values). - **2.** Adding 1000 to standard permissions turns on the "sticky bit"; adding 2000 turns on the SGID permission. Adding 4000 turns on the SUID permission. - 3. Links are created with the ln command. A "hard" link is nothing more than an alias to a file (sharing the same inode). The ln -s command creates a symbolic link that is an actual file with its own inode. The symbolic link contains a pointer to the original file and can span across file systems; the hard link cannot. - **4.** User
accounts can be added by manually editing the configuration files or by using the useradd command; they can be removed with userdel. - **5.** The groupadd utility can be used to create groups and groupdel can be used to remove groups. Groups can be modified with groupmod and users can change from one group to another with the newgrp command. - **6.** Passwords are changed with the passwd command. Older systems stored passwords in /etc/passwd; now passwords are stored in /etc/shadow, where they are more secure. - 7. To see who logged on most recently and may currently still be on the network, you can use the last command. - **8.** The su command allows you to become another user (returning with exit). If no other username is specified, then the root user is implied, hence the su for superuser. - **9.** Use sudo instead of su when you want to run a command as another user (usually root) without becoming that user. - 10. The who command shows who is logged on; the w command shows information combining who with uptime. Book VIII Chapter 1 Studying for the Linux Essentials Certification Exam # Chapter 2: Studying for the CompTIA Linux+ Powered by LPI Certification Exams #### In This Chapter - ✓ Getting an overview of the CompTIA Linux+ Exams - Looking into each domain in depth he previous chapter examines the Linux Essentials exam – LPI's lower-level certification. That certification should be viewed as a steppingstone to a higher-level exam. The Linux+ certification exam from CompTIA – consisting of the LPI LX0-101 and LX0-102 exams – is an ideal example of such a high-level test. In the following sections, we provide an overview of the two exams and then explore the topics beneath each of the domains. #### Overview of the CompTIA Linux+ Exams The official name of the certification in question is "CompTIA Linux+ Powered by LPI" and although that's a mouthful to say, it's also a meaningful addition to a résumé. The certification is awarded by CompTIA; it consists of two exams by the Linux Professional Institute (LPI): LX0-101 and LX0-102. Accordingly, at the time of taking the exams, a candidate can choose to have the test scores forwarded to LPI — and gain the Level 1 certification (LPIC-1) at the same time. Records are separately maintained by LPI and CompTIA. If you choose not to forward your scores, you can be Linux+-certified but not LPIC-1 certified. Each of the two exams consists of 60 questions that must be answered in 90 minutes. The passing score is 500 on a scale from 200 to 800, and it is highly recommended – but not required – that candidates have 12 months of Linux administration experience. There are four domains on one exam and six on the other. Table 2-1 shows the domains on each, along with their prospective weighting. | Table 2-1 | ns | | |-----------|---|-----------| | Exam | Domain | Weighting | | LX0-101 | 101 System Architecture | 14% | | | 102 Linux Installation and Package Management | 18% | | | 103 GNU and Unix Commands | 43% | | | 104 Devices, Linux Filesystems, Filesystem
Hierachy Standard | 25% | | LX0-102 | 105 Shells, Scripting, and Data Management | 17% | | | 106 User Interfaces and Desktops | 8% | | | 107 Administrative Tasks | 20% | | | 108 Essential System Services | 17% | | | 109 Networking Fundamentals | 23% | | | 110 Security | 15% | | | | | The sections that follow look at each of these topics in more detail. #### System Architecture Table 2-2 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-2 | Breakout of Domain 101 | | | |---|-------------------------------|---|--| | Subtopic | Weight | Description | Key Areas | | Determine
and configure
hardware
settings | 2 | Conceptual under-
standing of kernel
loading options and
boot steps | Working with peripherals, storage devices, and the tools you use to configure them | | Boot the system | 3 | How to walk through the boot process | Common boot com-
mands; the boot
sequence; boot logs | | Change run
levels and shut
down or reboot
system | 3 | Changing to single-
user mode, shutting
down and rebooting
the system. Knowing
that you should alert
users to changes in
run level and to the
need for properly ter-
minating processes | Default run level;
changing run levels;
how to terminate | To adequately address these topics, focus on the following files, terms, and utilities: /dev, /etc/init.d, /etc/inittab, /proc, /sys, /var/log/messages, BIOS, boot loader, dmesg, init, kernel, lsmod, lspci, lsusb, modprobe, shutdown, and telinit. Here are the top ten items to know as you study for this domain: - 1. The system log is /var/log/messages and this is where the majority of events are written to by the system log daemon (syslogd). Messages routed there can be viewed with the dmesq command. - 2. The logrotate command can be used to automatically archive log files and perform maintenance as configured in /etc/syslog.conf. - **3.** You can manually write entries to log files using the logger command. - **4.** The init daemon is responsible for maintaining proper running of daemons at specified run levels. The system attempts to go to the run level specified as the default in the /etc/inittab file upon each boot. - **5.** Run levels can be changed with the init and shutdown commands. - **6.** Valid run levels defined as standards are: 0 (power off), 1 (single-user mode), 2 (multiple user without NFS), 3 (multiple user with NFS), 5 (X environment), and 6 (reboot). - 7. The lsmod command is used to list loaded modules. The insmod command is used to install a module. The rmmod command is used to remove a module from the system. The modinfo command will show information about a module. - 8. The modprobe utility can probe and install a module and its dependents, while the depmod utility will determine and show any module dependencies that exist. - **9.** Kernel software is typically named linux-x.y.z where x.y.z represents the version number. - **10.** The make config command executes a command-line-oriented view and allows you to respond interactively with the kernel build. #### Linux Installation and Package Management Table 2-3 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. Book VIII Chapter 2 Studying for the CompTIA Linux+ Powered by LPI Sertification Exams | Table 2-3 | Breakout of Domain 102 | | in 102 | |--|-------------------------------|---|---| | Subtopic | Weight | Description | Key Areas | | Design hard disk
layout | 2 | Designing a
disk-partitioning
scheme for a
Linux system | Allocating file systems and swap space, tailor-ing the design to the intended use of the system | | Install a boot
manager | 2 | Select, install,
and configure a
boot manager | Boot loaders; GRUB and GRUB 2 | | Manage shared
libraries | 1 | Determine the shared libraries that executable programs depend on and install them when necessary | Shared library locations and how to load | | Use Debian pack-
age management | 3 | Know the
Debian package
tools | Install, upgrade, and
uninstall Debian binary
packages | | Use RPM and
Yum package
management | 3 | Know the RPM and Yum tools | Install, upgrade, and
remove packages with
RPM and Yum | To adequately address these topics, focus on the following files, terms, and utilities: / (root) file system, /boot/grub/menu.lst, /etc/apt/sources.list, /etc/ld.so.conf, /etc/yum.conf, /etc/yum.repos.d/, /home file system, /var file system, apt-cache, apt-get, aptitude, dpkg, dpkg-reconfigure, grub-install, LD_LIBRARY_PATH, ldconfig, ldd, MBR, mount points, partitions, rpm, rpm2cpio, superblock, swap space, yum, yumdownloader. Here are the top ten items to know as you study for this domain: - The 1dd command is used to see what shared libraries a program is dependent upon. - 2. The ldconfig command is used to update and maintain the cache of shared library data. You can see the current cache by using the command ldconfig -p. - **3.** Popular package managers include Red Hat's Package Manager (RPM) and Debian's (dpkg). The purpose of both is to simplify working with software. - **4.** Options available with RPM include -i (for installing packages), -e (for removing packages), -q (for querying what packages belong to what files), -b (for building a package), and -p (to print/display information). - 5. With dpkg, you use the dselect command to use the graphical interface. You can also use command-line options that include -i (to install packages), -1 (to list information about the package), -r (to remove the package), and -c (to list all files in the package). - **6.** The Advanced Packaging Tool (APT) was designed as a front end for dpkg but now works with both .deb and .rpm packages. - 7. The Yellow dog Updater, Modified is more commonly known as Yum and can be used at the command line to download RPM packages. - **8.** The superblock contains information about the type of file system, the size, status, and metadata information. - **9.** The GRUB bootloader (an acronym for GNU's Grand Unified Bootloader) allows multiple operating systems to exist on the same machine and a user to choose which one they want to boot on startup. The latest version is GRUB 2. - 10. Linux uses both a swap partition and a
swap file for swap space. The swapon command can be used to toggle designated swap space on and off. Areas for swap space can be created with mkswap. #### GNU and Unix Commands Table 2-4 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-4 | Breakout of Domain 103 | | | |--|-------------------------------|---|---| | Subtopic | Weight | Description | Key Areas | | Work on the
command line | 4 | Interact with shells
and commands
using the command
line and the bash
shell | Use single shell commands and one-line command sequences as well as modify the shell environment and use/edit command history | | Process text
streams using
filters | 3 | Apply filters to text streams | Send text files and
output streams through
text utility filters | | Perform
basic file
management | 4 | Use the basic
Linux commands to
manage files and
directories | Copy, move, and
delete files and
directories individu-
ally and recursively | Book VIII Chapter 2 Studying for the CompTIA Linux+ Powered by LPI Certification Exams | Table 2-4 (continued) | | | | |---|--------|--|---| | Subtopic | Weight | Description | Key Areas | | Use streams,
pipes, and
redirects | 4 | Redirect streams
and connect
them – including
standard output,
standard input, and
standard error | Pipe the output of one command to the input of another | | Create, monitor,
and kill
processes | 4 | Perform basic pro-
cess management | Run jobs in the fore-
ground and back-
ground; send signals
to processes | | Modify process execution priorities | 2 | Manage process execution priorities | Run programs with higher and lower priorities than the default | | Search text
files using regu-
lar expressions | 2 | Understand regular expressions and how to use them | Create simple regular expressions and perform searches | | Perform basic
file editing
operations
using vi | 3 | Understand vi
navigation, editing,
copying, deleting,
etc. | Use basic vi modes to insert, edit, copy, delete, and find text. | To adequately address these topics, focus on the following files, terms, and utilities: &, ., bash, bg, bzip2, cat, cp, cpio, cut, dd, echo, egrep, env, exec, expand, export, fg, fgrep, file, file globbing, find, fmt, free, grep, gunzip, gzip, head, history, jobs, join, kill, killall, ls, man, mkdir, mv, nice, nl, nohup, od, paste, pr, ps, pwd, regex (7), renice, rm, rmdir, sed, set, sort, split, tail, tar, tee, top, touch, tr, uname, unexpand, uniq, unset, uptime, vi, wc, and xargs. Here are the top ten items to know as you study for this domain: - 1. When run, every command spans at least one process and processes can be viewed with ps or top (which continues to update the display dynamically). - **2.** Jobs can run in the foreground or background and be moved between the two. Jobs running in the foreground can be suspended by pressing Ctrl+Z. - 3. Files can be copied using cp or moved using mv. Files can be deleted with rm and directories (which are created with mkdir) can be removed with rmdir. Recursive deletion can be done with rm -r. - **4.** To change directories, use the cd command. When used without parameters, this will move you to your home directory. To see what directory you are presently working in, use the pwd (present working directory) command. - **5.** The ls command has a plethora of options to allow you to list files. The -a option will list all (including hidden) files. - **6.** The cut command can pull fields from a file and they can be combined using either paste or join. The latter offers more features than the former and can be used with conditions. - 7. The wc command can count the number of lines, words, and characters in a file. - **8.** The grep utility (and its counterparts egrep and fgrep) can be used to find matches for strings within files. - 9. The find command can be used to search the system for files/directories that meet any number of criteria. When these entities are found, the xargs command can be used to look deeper within them for other values (such as in conjunction with grep). - 10. It's possible to convert data from one value to another by using a number of utilities. The most popular would include the tr (translate) utility and sed (the stream editor). #### Devices, Linux File Systems, Filesystem Hierarchy Standard Table 2-5 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-5 | Breakout of Domain 104 | | | |---|-------------------------------|--|---| | Subtopic | Weight | Description | Key Areas | | Create partitions and file-systems | 2 | Configure disk partitions | Use various mkfs
commands to set-up
partitions and
create file-systems | | Maintain the integrity of file-systems | 2 | Maintain a standard
file-system and the
extra data associ-
ated with journaling | File-system monitor-
ing, integrity, and
repair | | Control mounting
and unmounting
of file-systems | 3 | Configure the mounting of file-systems | Manually mount
and unmount and
configure remov-
able file-systems | | Manage disk
quotas | 1 | Manage user
quotas | Configure quotas,
edit and check
reports | Book VIII Chapter 2 Studying for the CompTIA Linux+ Powered by LPI Sertification Exams | Table 2-5 (continued) | | | | |--|--------|--|--| | Subtopic | Weight | Description | Key Areas | | Manage file permissions and ownership | 3 | Control file access
with permissions
and ownership | Change the file-
creation mask, work
with special files | | Create and change hard and symbolic links | 2 | Manage links to a file | Use links to sup-
port system
administration | | Find system files
and place files
in the correct
location | 2 | Filesystem
Hierarchy Standard
(FHS) | Correct location of files and the purpose of important directories | To adequately address these topics, focus on the following files, terms, and utilities: /etc/fstab, /etc/updated.conf, /media, chgrp, chmod, chown, debugfs, df, du, dump32fs, e2fsck, edquota, ext2/ext3/ext4, find, fsck, ln, locate, mke2fs, mkfs, mkswap, mount, quota, quotaon, reiserfs v3, repquota, tune2fs, type, umask, umount, updated, vfat, whereis, which, xfs, xfs tools Here are the top ten items to know as you study for this domain: - 1. File and directory permissions can be changed with the chmod command (which accepts numeric and symbolic values). - **2.** The owner of a group can be changed with the chown command whereas the charp command allows changing he group associated with a file. - 3. The du command can show how much of a disk is used. - **4.** The df command shows how much of a disk is free. - 5. The main tool for troubleshooting disk issues is fack which can check file-system structure, including inodes. - **6.** To mount file-systems, use the mount command and to unmount them use umount. To have mounting occur automatically at startup, add the entries to /etc/fstab. - 7. Quotas can restrict the amount of space users or groups can use on the disk. Quotas are initialized with the quota command and they are toggled on and off with quotaon and quotaoff. They can be changed with edquota and reports can be generated with repquota. - **8.** When files are first created, the default permissions are equal to 666 minus any umask values. The default permissions for directories is equal to 777 minus any umask values. - **9.** The mke2fs utility can be used to make the file-system. - Linux supports numerous file-systems including ext2, ext3, ext4, and reiserfs. #### Shells, Scripting, and Data Management Table 2-6 shows the subtopics, weights, descriptions, and key knowledge areas for this topic — the first of the 102 exam. | Table 2-6 | Breakout of Domain 105 | | | |---|------------------------|--|---| | Subtopic | Weight | Description | Key Areas | | Customize and use the shell environment | 4 | Be able to modify
global and user
profiles | Set environment vari-
ables and work within
bash | | Customize or write simple scripts | 4 | Customize existing
bash scripts and
write new ones | Be able to write code
that includes loops and
tests | | SQL data
management | 2 | Query databases
and manipulate
data with SQL | Know basic SQL
commands | To adequately address these topics, focus on the following files, terms, and utilities: /etc/profile, ~/.bash_login, ~/.bash_logout, ~/.bash_profile, ~/.bashrc, ~/.profile, alias, delete, env, export, for, from, function, group by, if, insert, join, lists, order by, read, select, seq, set, test, unset, update, where, and while. Here are the top ten items to know as you study for this domain: - Logic can be added to scripts by testing conditions with test or [. Commands can execute using if-then-fi deviations or through looping (while, until, or for). You
can leave a script with the exit command or leave a loop with break. - **2.** Variables can be given at the command line and referenced as \$1, \$2, and so on, or entered into the executing file with the read command. - 3. The alias command can be used to create an alias for a command to operate by another name (for example, being able to type dir and have ls -1 performed). - **4.** Environmental variables can be viewed with the env command. - **5.** Variables can be added to the environment using the set command and export; they are removed using unset. - **6.** The /etc/profile configuration file is executed whenever a user logs in. - 7. For those using the bash shell, the shell first looks for .bash_profile; if it does not file that profile, it looks for .bash_login. - **%.** When the bash user logs out, the shell will look for .bash_logout and execute any commands found there. Book VIII Chapter 2 Studying for the CompTIA Linux+ Powered by LPI Certification Exams - **9.** While other configuration files run only when the user logs in or out, the .bashrc file can execute each time a shell is run. - 10. Shell scripts must have executable permissions to run, or be called by a shell (for example: sh script). The normal exit status of any script or application is 0 and anything else signifies a non-normal exit. #### **User Interfaces and Desktops** Table 2-7 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-7 | Breakout of Domain 106 | | | |-----------------------------|-------------------------------|---|--| | Subtopic | Weight | Description | Key Areas | | Install and configure X11 | 2 | Be able to install
and configure X11 | Basic understand-
ing of X Window
configuration | | Set up a display
manager | 2 | Set up and cus-
tomize a display
manager | Work with XDM
(X Display Manager),
GDM (Gnome Display
Manager), and
KDM (KDE Display
Manager) | | Accessibility | 1 | Knowledge and awareness of accessibility technologies | Assistive Technology
(ATs) and keyboard
settings | To adequately address these topics, focus on the following files, terms, and utilities: /etc/initab, /etc/x11/xorg.conf, braille display, DISPLAY, emacspeak, gdm configuration files, gestures, GOK, high contrast desktop themes, kdm configuration files, large screen desktop themes, mouse keys, on-screen reader, orca, screen magnifier, screen reader, slow/bounce/toggle keys, sticky/repeat keys, X, xdm configuration files, xdpyinfo, xhost, xwininfo Here are the top ten items to know as you study for this domain: - 1. The emacspeak speech interface is one of the most popular speech interfaces available for Linux. - 2. The xdpyinfo utility can be used to view information about an X server. It can be used with the all option to see information about all the extensions supported by the server. - 3. Window information for X can be viewed with the xwininfo utility. Using the -all option shows all the possible information. - **4.** The server access-control program for X is xhost. This is used to connect to a host across the network and work within the graphical interface. - **5.** The X Display Manager (XDM) is the default display manager included with the X Window System. - **6.** The /etc/x11/xorg.conf file is the X configuration file used for initial setup. - Several assistive technology projects have been developed for both KDE (the KDE Accessibility Project) and GNOME (the GNOME Accessibility Projects). - **8.** Orca is a screen reader from the GNOME project intended to help individuals who are blind or impaired. Orca will work with Firefox, Thunderbird, OpenOffice.org/LibreOffice, and other applications. - **9.** The GNOME onscreen keyboard reader (GOK) is another assistive technology. It works with XML files and can dynamically create keyboards to adapt to a user's needs. - 10. Slow keys can be configured for a keyboard preference to accept input only if a key is held; this prevents accidental presses from counting as input. Bounce keys can be configured to ignore fast duplicate key presses; sticky keys can be used to simulate simultaneous key presses. #### Administrative Tasks Table 2-8 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-8 | Breakout of Domain 107 | | | |--|-------------------------------|--|---| | Subtopic | Weight | Description | Key Areas | | Manage user and
group accounts
and related system
files | 5 | Add, remove, suspend, and change user accounts | Work with user and group accounts — including those for special purposes and limited accounts | | Automate system administration tasks by scheduling jobs | 4 | Use cron and anacron | Run jobs at regular intervals and at specific times | | Localization and
Internationalization | 3 | Localize a system
in a language
other than English | Understand why
LANG=C is useful in
scripts | Book VIII 2 Studying for the CompTIA Linux-Powered by LP Certification Exar To adequately address these topics, focus on the following files, terms, and utilities: /etc/at.allow, /etc/at.deny, /etc/cron, /etc/cron.allow, /etc/cron.deny,/etc/crontab,/etc/group,/etc/localtime,/etc/ passwd, /etc/shadow, /etc/skel, /etc/timezone, /usr/bin/locale, /usr/share/zoneinfo,/var/spool/cron/*, ASCII, at, atg, atrm, chage, crontab, date, environment variables, groupadd, groupdel, groupmod, iconv, ISO-8859, passwd, tzconfiq, tzselect, Unicode, useradd, userdel, usermod, and UTF-8. Here are the top ten items to know as you study for this domain: - 1. Users can be added by manually editing the configuration files or by using the useradd command (and they can be removed with userdel). - 2. The groupadd utility can be used to create groups and groupdel can be used to remove groups. Groups can be modified with groupmod and users can change between groups with the newgrp command. - 3. To schedule a job to run only once in unattended mode, you can use the at command. - **4.** Scheduled jobs can be viewed with the atq command and deleted prior to execution with atrm. - **5.** Restrictions can be placed on who can use the at service (atd) by creating an at.allow file and only placing valid usernames beneath it. - 6. You can create an at.deny file instead of at.allow and place in it the names of users who cannot use that at service (meaning that everyone not listed in there can still use it). - 7. If you need to schedule an unattended job to run at any sort of regular interval, you can create a crontab (cron table) entry for it. - 8. Crontab files are read by the cron daemon, which looks every minute to see whether any jobs need to run. - **9.** Restrictions can be placed on who can use cron by creating a cron. allow or a cron. deny file. - 10. There are six fields to each entry in the cron tables: the minute the job is to run (0 to 59), the hour the job is to run (0 to 23), the day of the month (1 to 31), the month of the year (1 to 12), the day of the week (0 to 6), and the path to the executable that is to run. #### Essential System Services Table 2-9 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-9 | | Breakout of Domain 108 | | | |--|--------|--|---|--| | Subtopic | Weight | Description | Key Areas | | | Maintain system time | 3 | Properly maintain
the system time and
synchronize the
clock | NTP | | | System logging | 2 | Configure the syslog daemon | Configure the
logging daemon
to send log output to
a server | | | Mail Transfer
Agent (MTA)
basics | 3 | Commonly available
MTA programs | Be able to perform
basic forward and
alias configuration
on a host | | | Manage printers
and printing | 2 | Manage print
queues and user
print jobs | Use both CUPS and
LPD | | To adequately address these topics, focus on the following files, terms, and utilities: /etc/cups, /etc/localtime, /etc/ntp.conf, /etc/timezone, /usr/share/zoneinfo, ~/.forward, CUPS config files/tools/utils, date, exim, hwclock, klogd, logger, lpd legacy interface (lpr, lprm, lpq), mail, mailq, newaliases, ntpd, ntpdate, pool.ntp.org, postfix, qmail, sendmail, syslog.conf, syslogd. Here are the top ten items to know as you study for this domain: - The Network Time Protocol daemon (ntpd) maintains the time on all servers using NTP. - **2.** The hwclock command can be used to display the date and time of a system's hardware clock (also known as the *real-time clock*). - **3.** The time zone is configured in the /etc/timezone file. Local time is likewise configured in /etc/localtime. - **4.** The sendmail service is a general purpose SMTP program used for sending e-mail between servers. - The mailq command shows a list of messages in the mail queue and works sendmail. - **6.** The newaliases command builds a database for the mail aliases file. - 7. Mail can be forwarded from one e-mail address to another using a .forward file. Book VIII Chapter 2 Studying for the CompTIA Linux+ Powered by LPI Certification Exam - 8. Line printers are rarely used anymore, but support for them remains. The primary utilities associated with them were/are as follows: 1pr (to submit a print job), 1pg (to see the print queue), and 1prm (to remove queued print jobs). - **9.** The Common Unix Printing System (CUPS) is the most common printing interface used on Linux today. It provides support
for the line-printer daemon as well as for Server Message Block (SMB). - 10. The kernel logging daemon (kloqd) logs Linux kernel messages. #### Networking Fundamentals Table 2-10 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-10 | Breakout of Domain 109 | | | |---------------------------------------|-------------------------------|---|---| | Subtopic | Weight | Description | Key Areas | | Fundamentals of
Internet protocols | 4 | Demonstrate a
proper understand-
ing of TCP/IP | Know networking fundamentals | | Basic network configuration | 4 | Be able to view,
change, and verify
configuration set-
tings on clients and
hosts | Manually and auto-
matically configure
network interfaces | | Basic network troubleshooting | 4 | Be able to trouble-
shoot networking
issues on clients
and hosts | Debug problems
associated with
the network
configuration | | Configure client side DNS | 2 | Be able to con-
figure DNS on a
client/host | Modify the order in which name resolution is done | To adequately address these topics, focus on the following files, terms, and utilities: /etc/hostname, /etc/hosts, /etc/nsswitch.conf, /etc/resolv. conf, /etc/services, dig, ftp, host, hostname, ifconfig, ifdown, ifup, netstat, ping, route, telnet, tracepath, and traceroute. Here are the top ten items to know as you study for this domain: 1. IPv4 uses 32-bit addresses divided into four octets. The first octet identifies the class of address (A, B, C). The address can be public or private. - **2.** The ifconfig utility can be used to see the current IP configuration of the network cards. - **3.** The ping utility is an all purpose tool for testing connectivity. It will send echo messages to a specified host to see if it can be reached. It can be used with the loopback address (127.0.0.1) to test internal configuration. - **4.** Instead of using ping, one can use traceroute to see the route taken to reach a particular host. - The route utility will display the routing table and allow you to configure it. - **6.** The netstat utility will show the current status of ports those that open, those that are listening, and so on. - 7. The name of the network host is configured in /etc/hostname and can be viewed with the hostname command. - **8.** You can remotely log in to to another host with telnet, but it's highly recommended that this utility no longer be used due to very weak security. - **9.** FTP servers can be used to transfer files from one host to another. - **10.** DNS is used for resolving names to addresses. Utilities that can be used in conjunction with it include dig (for DNS lookup). #### Security Table 2-11 shows the subtopics, weights, descriptions, and key knowledge areas for this topic. | Table 2-11 | Breakout of Domain 110 | | | |---------------------------------------|-------------------------------|---|------------------------------------| | Subtopic | Weight Description Key Ar | | Key Areas | | Perform security administration tasks | 3 | Review system con-
figuration to ensure
host security | Understand local security policies | | Setup host security | 3 | Know how to setup
a basic level of host
security | Understand TCP wrappers | | Securing data with encryption | 3 | Key techniques that secure data | OpenSSh and
GnuPG | Book VIII Chapter 2 CompTIA Linux Powered by LI Certification Exc To adequately address these topics, focus on the following files, terms, and utilities: /etc/hosts.allow, /etc/hosts.deny, /etc/inetd.conf, /etc/inetd.d/*, /etc/init.d/*, /etc/inittab, /etc/nologin, /etc/passwd, /etc/shadow, /etc/ssh/ssh host dsa key, /etc/ ssh/ssh_host_rsa_key,/etc/ssh_known_hosts,/etc/sudoers,/etc/xinetd.conf,/etc/xinetd.d/*,~/.gnupg/*,~/.ssh/authorized_keys,~/.ssh/id_dsa,~/.ssh/id_rsa,chage,find,gpg,id_dsa.pub,id_rsa.pub,lsof,netstat,nmap,passwd,ssh,ssh_host_dsa_key.pub,ssh_host_rsa_key.pub,ssh-add,ssh-agent,ssh-keygen,su,sudo,ulimit,andusermod. Here are the top ten items to know as you study for this domain: - **1.** Adding 1000 to standard permissions turns on the "sticky bit", whereas 2000 turns on the SGID permission and 4000 turns on the SUID permission. - 2. Links are created with the ln command. A hard link is nothing more than an alias to a file (sharing the same inode). A symbolic link is created with ln -s and is an actual file with its own inode. The symbolic link contains a pointer to the original file and can span across file systems (while the hard link cannot). - **3.** Passwords are changed with the passwd command. While older systems stored passwords in /etc/passwd, they are now in /etc/shadow where they are more secure. - 4. To see who logged on most recently and may currently still be logged on, you can use the last command. - **5.** The su command allows you to become another user (returning with exit). If no other username is specified, then the root user is implied, hence su for *superuser*. - **6.** To run a command as another user (usually root) rather than become them, sudo should be used instead of su. - 7. The who command shows who is logged on; the w command shows information combining who with uptime. - **%.** You can limit which hosts can remotely connect by using either a hosts. allow file (only those hosts specifically listed can connect) or a hosts. deny file (only those hosts specifically listed cannot connect). - **9.** The ulimit utility can show the limit on the number of open files allowed in Linux. You can also change that value by using this same command. - 10. The usermod command changes attributes for a user and modifies the user account. ## Chapter 3: Other Linux Certifications #### In This Chapter - **✓** Overview of vendor-neutral certifications - **✓** Overview of vendor-specific certifications Previous chapters look at the Linux Essentials exam – LPI's lower-level certification – and then at the higher entry-level CompTIA Linux+certification (consisting of the LPI LX0-101 and LX0-102 exams). As important as those exams are, they are far from the only Linux certifications available. In the following sections, we will look first at other vendor-neutral certifications, and then an overview of some of the more popular vendor-specific Linux certification. #### Vendor-Neutral Certifications Just as the CompTIA Linux+ Powered by LPI certification is a great entry-level authentication of basic knowledge, so too are most other certifications from CompTIA. The only operating system-specific one they have is Linux+, but they also offer such other certifications as A+ (hardware), Network+ (computer networking), Security+ (host and client security), and Green IT (sustainability). All are well recognized and represented in the market and good choices for adding to a resume. LPI also offers a number of certifications above the LPIC-1 level. LPIC-2, which requires passing another two exams (referenced as 201 and 202), focuses on such advanced topics as network configuration, file storage, troubleshooting, and system security. LPIC-3 is for senior-level administrators and requires you to take one exam of your choice — on top of having attained the LPIC-2 certification. The exam you choose to take is the one that hones in on a specific area of expertise, such as virtualization and high availability or security. Some other vendor-neutral Linux certifications once existed and were popular, but most of those have now fallen by the wayside – either no longer offered or no longer kept current. Although those certifications may hold value for those who currently hold them, they should be avoided by those who are currently looking to have a third-party authenticate their knowledge/skills. #### Vendor-Specific Certifications A number of vendors offer certifications that authenticate specialization in their specific distributions of Linux. The three most popular are discussed in this section. One of the most recognized is those from Red Hat. At the entry level, the company offers the Red Hat Certified System Administrator (RHCSA) certification. The more recognized Red Hat Certified Engineer (RHCE) builds upon RHCSA, and the pinnacle certification is Red Hat Certified Architect (RHCA). Novell/SUSE certification is available at four levels: SUSE Certified Linux Administrator (CLA), SUSE Certified Linux Desktop Administrator, SUSE Certified Linux Professional (CLP), and SUSE Certified Linux Engineer (CLE). Most of these certifications build on each other — CLA leads to CLP with another exam, and then you move on to CLE, and so on. Oracle — now having acquired Sun Microsystems — offers both Oracle Certified Associate (OCA) and Oracle Certified Professional (OCP), and Certified Specialist (CS) certifications. ### Index ### Symbols and Numerics - command, 144 ; command, 144 : command, 452 :! command, 149 ! command, 238 ? command, 238 . command, 144, 452 ' command, 144 { command, 452 % command, 144 ^ command, 144 + command, 144 = command, 144 \$ command, 144 / directory, 111 \$< variable, 475 \$? variable, 475 \$* variable, 475 \$% variable, 475 \$^ variable, 475 \$+ variable, 475 * (asterisks), 95–96, 305, 494 @ (at sign), 116 \ (backslash), 91, 272 : (colon), 91, 142, 272, 343, 399 {} (curly braces), 249, 264, 448-449 \$ (dollar sign), 289, 474 .. (dot-dot), 115, 494 = (equal sign), 348 ! (exclamation point), 97, 273 / (forward slash), 109, 111 > (greater-than sign), 93–94 # (hash mark), 249, 380, 449 - (hyphen), 117, 470 < (less-than sign), 93–94 . (period), 111, 119–120, 144, 494 | (pipe), 92, 105, 496 # (pound sign), 189, 208, 264, 271, 438 ? (question marks), 95-96, 208, 494 ; (semicolon), 380, 451, 496 / (slash), 116, 143, 147, 352-353 [] (square brackets),
95–96 ~ (tilde) character, 115, 146 -00 option, 471 10Base2, 173 10Base5, 173 10BaseT, 173 24-bit IV, 182 32-bit cyclic redundancy code (CRC-32), 182 127.0.0.1, reverse mapping, 295 802.11a standard, 180 802.11b standard, 179–180 802.11g standard, 180 #### A a command, 145, 148 A command, 148 A resource record type, 290, 292 AAAA resource record type, 290 Abacus portsentry, 441 accessing DOS/Windows file system, 368-371 acpid service, 254 acpi=off boot option, 44 action field, 311 Active Window icon (KDE), 85 ad hoc modes, 180-181 adding newsgroups, 276-277 administrative tasks, in CompTIA Linux+ Exam, 511-512 ADSL (Asymmetric DSL), 157 Advanced Packaging Tool (APT), 50 AirSnort, 441 alias command, 98, 452, 509 allowcddma boot option, 44 allownewnews parameter, 272 all squash option, 375 alt category, 219 anongid=GID option, 376 anonuid=UID option, 376 -ansi option, 470 apache service, 254, 438 Apache Web Server vulnerability, 433 apic boot option, 44 apmd service, 254 append command, 238 applets, 121 application gateway, 392 Application layer, of TCP/ IP, 168 Application Starter, 82–85 application-proxy gateway firewall, 420 applications about, 19-21, 127-128 calculators, 132–133 calendars, 132 graphics and imaging about, 136 GIMP, 18, 20, 136-137 GNOME Ghostview, 18, 138 multimedia about, 133 burning CDs/DVDs, 135-136 digital camera, 133-134 playing audio CDs, 134-135 playing sound files, 135 office, 128-132 Applications category (KickOff), 83 Applixware, 20 apropos command, 98 APT (Advanced Packaging Tool), 50 apt-get command, 11, 50, 128 AR variable, 475 ARFLAGS variable, 475 arguments, 61, 91 Arkeia utility, 363 ARPANET, 169, 279 AS variable, 290, 475 ascii command, 238 ASCII-armored format, 409 ASFLAGS variable, 475 associates, 244 asterisks (*), 95–96, 305, 494 Asymmetric DSL (ADSL), 157 async option, 375 at command, 331–333, 512 at sign (@), 116 atd service, 254, 331 atq command, 512 atrm command, 333, 512 audio CDs, playing, 134–135 audit, 429 authentication defined, 392 in security policy, 387 vulnerability, 433 authorization, in security policy, 387 autoconf software package, 17 autofs service, 254 automake software package, 17 automated backups, 367 automatic command completion, 95 automatically starting servers, 313-314 awk command, 459–463 B b command, 149 -b option, 477 backdoor, 392 backing up files about, 361 commercial backup utilities, 362–363 selecting backup strategy and media, 361–362 tar command, 363-367 hard drive before installation, 33 backslash (\), 91, 272 bash shell. *See also* shell scripting about, 17, 90, 509 asterisks in, 95-96 automatic command completion, 95 combining commands, 92 command syntax, 90–92 controlling command input and output, 92–94 question marks in, 95–96 repeating previously typed commands, 97 starting, 60–61 bastion host, 392 batch files, 106 bc software package, 17 Berkeley Internet Name Domain (BIND) about, 282 DNS vulnerability, 433 named daemon, 254, 282–283, 296 resolver library, 280, 283 utility programs, 284-285 Berkeley sockets interface, 242 bg command, 100, 453 /bin directory, 111, 354 binary command, 238 BIND. See Berkeley Internet Name Domain (BIND) Binutils software package, 17 bionet category, 219 BIOS, reconfiguring, 36 bison, 486 bit bucket, 94 bit category, 219 biz category, 220 black box, 440 block devices, 326 BogoMIPS, 58, 59Bookmarks menu (Firefox), 212 /boot directory, 111, 354 boot loader, 57–58 boot messages, 58 boot: prompt, 44 bootable flash drive. creating, 35 /boot/grub file, 314 /boot/grub/menu.lst file, 314, 435 BOOTPROTO parameter, 186, 200 boots automatically starting servers, 313-314 /etc/inittab file, 310 - 311init command, 311-312 init process, 308-310 manually starting/ stopping servers, 313 startup scripts, 312–313 /boot/System.map file, 314 /boot/vmlinuz file, 314 bottom panel (GNOME), 73-74 bounce keys, 511 break command, 453, 480, 509 BRU utility, 362 bt command, 480 buffer, 145 buffer overflow, 392 built-in commands, bash, 451–455 burning CDs/DVDs, 135–136 business requirements, for security, 385–386 bye command, 238 #### C c command, 145 C command, 148 C++ compiler, 17, 468-472 C operator, 265 -c option, 470 -C option, 477 CA (certificate authority), 392 CA ARCserve Backup for Linux utility, 363 cable modem about, 155 connecting with about, 161 how it works. 161–163 setup, 163–166 **Cable Modem Termination** System (CMTS), 162–163 cable/DSL router. 161, 165 cables, Ethernet, 173–175 caching name server configuring, 286–296 starting and testing, 295-296 cal command, 101 Calc (LibreOffice.org), 130-131 calculator apps, 132–133 calendar apps, 132 careers, on Linux Essentials Certification Exam, 492-493 Carrier-Sense Multiple Access/Collision detection (CSMA/ CD), 172 case statement, 450-451 cat command, 92, 95, 99 categories of shielded and unshielded twisted-pair cables, 173-174 tasks by in YaST Control Center, 305 cc command, 148 CC variable, 475 cd command, 98, 115, 238, 453, 495, 506 cd images command, 121 cdrdao, 136 cdrecord, 136 CD-ROM, mounting, 357 audio, playing, 134–135 burning, 135–136 installing from, 29–31 mounting, 25 central processing unit (CPU), 9 **CERT Coordination** Center (CERT/CC) (website), 397 CERT resource record type, 291 certificate, defined, 392 certificate authority (CA), 392 certifications vendor-neutral, 517 vendor-specific, 518 CFLAGS variable, 475 chage command, 396, 400-401 chain, 424 changing directories, 495 file ownerships, 118–119, 350, 402 file permissions. 118-119, 403 home page in Firefox, 212-215 CHANNEL parameter, 186 character devices, 327 characters, substituting/ deleting from files. 105-106 check digit, 459 checking connectivity to host, 195 disk performance/disk usage, 321–322 IP routing table, 194 network interfaces. 193-194 network status, 195-197 PC hardware, 31–33 for set user ID permission, 405 Cheops, 441 charp command, 402, 508 chkconfig command, 251-252, 314, 438 chmod command, 98, 118-119, 238, 499, 508 chown command, 98, 402, 508 chsh command, 100 Cinnamon, 69–70, 75–76 clari category, 220 clear command, 480 client architecture, 241 client/server model. sockets and, 243-244 close command, 238 CMTS (Cable Modem Termination System), 162-163 CNAME resource record type, 291 CO variable, 475 coaxial cable, 162 | CodeWeavers CrossOver | append, 238 | cut, 99, 496, 507 | |--------------------------|--------------------------|----------------------------| | Office, 21 | apropos, 98 | d, 143, 145 | | COFLAGS variable, 475 | | D, 148, 268 | | Collier-Brown, David | apt-get, 11, 50, 128 | | | | ascii, 238 | date, 101, 103-104 | | (author) | atq, 512 | dd, 44, 99, 148 | | Using Samba, 3rd | atrm, 333, 512 | declare, 453 | | Edition, 380 | awk, 459–463 | delete, 239 | | colon (:), 91, 142, 272, | b, 149 | depmod, 328 | | 343, 399 | bash built-in, 451–455 | df, 101, 123–125, 508 | | colon command mode, 146 | bg, $100, 453$ | dG, 148 | | combining shell | binary, 238 | diff, 17, 99 | | commands, 92 | break, 453, 480, 509 | $\mathtt{dir}, 239$ | | ! command, 144 | bt, 480 | for directory navigation, | | command, 453 | bye, 238 | 114–115 | | COMMAND heading, 319 | c, 145 | dirs, 453 | | command history, 97 | c, 148 | disconnect, 239 | | command input/output, | cal, 101 | display, 480 | | controlling, 92–94 | cat, 92, 95, 99 | dselect, 505 | | command interpreter, 60 | cc, 148 | du, 101, 123–125, 365, 508 | | command line, 61, 91, | cd, 98, 115, 238, 453, | dw, 148 | | 493–496, 495–496 | 495, 506 | echo, 453 | | command mode, 142 | cd images, 121 | enable, 453 | | COMMAND.COM, 90 | chage, 396, 400–401 | env, 348, 509 | | command-line | chgrp, 402, 508 | eval, 453 | | FTP client, 236–240 | chkconfig, 251-252, | exec, 453 | | options, 91 | 314, 438 | exit, 453 | | commands | chmod, 98, 118–119, 238, | expand, 99 | | - command, 144 | 499, 508 | | | ; command, 144 | • | export, 453, 509 | | : command, 452 | chown, 98, 402, 508 | expr, 450 | | :! command, 149 | chsh, 100 | failsafe Knoppix boot | | ! command, 238 | clear, 480 | command, 40 | | ? command, 238 | close, 238 | fb1280x1024 Knoppix | | . command, 144, 452 | ! command, 144 | boot command, 40 | | `command, 144 | command, 453 | fc, 453 | | { command, 452 | compress, 100 | fdformat, 101 | | % command, 144 | continue, 453, 480 | fdisk, 101 | | ^ command, 144 | cp, 98, 119–120, | fg, 100, 453 | | + command, 144 | 369–370, 506 | file, $99,480$ | | = command, 144 | cpio, 17, 100 | find, 99, 121–122, 396, | | \$ command, 144 | crontab, $333-336$, | 496, 507 | | a, 145, 148 | 367, 512 | fold, 99 | | А, 148 | Ctrl+D, 149 | free, 100 | | at, 331–333, 512 | Ctrl+L, 149 | fsck, $101, 508$ | | alias, 98, 452, 509 | Ctrl+U, 149 | gcc, 18, 468–469, 469–470 | | arras, 30, 432, 303 | | | get, 239 knoppix hsync=80,41 logger, 498, 503 gpg, 390, 408-412 knoppix lang=xx,41 logout, 454 grep, 18, 51, 62, 91, 92, knoppix mem=256M, 41 logrotate, 498, 503 96, 99 knoppix myconf=/dev/ lpg, 514 groups, 100 hda1, 41 lpr, 99, 514 qunzip, 100 lprm, 514 knoppix myconf= gzip, 18, 100, 496 ls, 98, 116-118, 119, 239, scan, 41 h, 149 350, 402, 495, 507 knoppix noeject, 42halt, 100 1smod, 328, 329, 503 knoppix noprompt, 42 hash, 239, 454 knoppix nowheel, 42 mail, 258 help, 239, 452, 454, 480 knoppix noxxx, 42 mailq, 513 history, 97, 454 knoppix pci=bios, 42 make, 19, 476-478, 481 hwclock, 513 knoppix pnpbios= make config, 503i, 143, 145, 148 off, 42 man, 98, 495 I, 148 managing user accounts knoppix screen= with, 342-343 id, 101, 311 resolution, 42 ifconfig, 193, mdelete, 239 knoppix testcd, 42 498, 515 mdir, 239 knoppix tohd=/dev/ mget, 239 image, 239 hda1, 42 info, 98, 495 mkdir, 98, 120-121, 239 knoppix toram, 42 info break, 480 mkfs, 101 knoppix vga=ext, 42 info files, 480 mknod, 101 knoppix vsync=60,42 mkswap, 101 info func, 480 knoppix mls, 239info local, 480 wheelmouse, 42modinfo, 328, 503 info prog, 480 knoppix info var, 480 modprobe, 328, 329, xmodule=modname, 43 330, 503 init, 102, 311-312, 503 knoppix xserver= more, 63, 99 insmod, 328
progname, 43 mount, 101, 356, 357, 358, iptables, 164, 421-422, ksyms, 328 424-426 368–369, 508 1, 149 j, 149 mput, 239 last, 499, 516 mv, 98, 495, 506 J, 148 1cd, 239-n. 144 jobs, 454 ldconfig, 504 n, 145 join, 496, 507 1dd, 100, 504 ^n, 145 k, 149 less, 19, 99 kill, 100, 454, 481 +n, 144 Linux netstat, 195, 397, knoppix 1,41 about, 62-63, 98-101 498, 515 knoppix 2,41 date, 103–104 newaliases, 513 managing processes, knoppix acpi=off, 41 newgrp, 499, 512 102-103 knoppix atapicd, 41 processing files, next, 481 knoppix 104-106 nice, 100 desktop=wmname, 41 time, 103–104 nl, 99 knoppix dma, 41 list, 481 open, 240 knoppix ln, 98, 499, 516 p, 149 floppyconfig, 41 local, 454 P, 149, 265 knoppix fromhd=/dev/ locate, 99, 122 hda1, 41 pack, 496 | | 1 ' 5 454 | 240 | |-----------------------------|----------------------------|---| | commands (continued) | shift, 454 | user, 240 | | passwd, 101, 397, 516 | shutdown, 100, 503 | useradd, 499, 512 | | paste, 99, 496, 507 | size, 240 | userdel, 499 | | patch, 19, 99 | s/old/new/, 145 | w, 149, 499 | | ping, 195, 441, 498, 515 | sort, 99, 105 | w file, 145 | | popd, 454 | split, 99, 106 | W file, 145 | | print, 481 | status, 240 | :w filename, 149 | | printenv, 100, 347 | step, 481 | wait, 455 | | prompt, 240 | /string, 149 | watch, 481 | | ps, 63, 100, 496, 506 | ?string, 149 | wc, 100, 104–105, 496, 507 | | pstree, 100 | su, 101, 102, 306, 397, | whatis, 98, 495 | | pushd, 454 | 499, 516 | where, 481 | | put, 240 | swapoff, 101 | whereis, 99 | | pwd, 98, 115, 240, 454, 506 | swapon, 101 | which, 99 | | q, 144, 145 | sync, 101, 375 | who, 499, 516 | | :q, 149 | tac, 99 | : wq, 149 | | Q, 145 | tail, 99 | x, 148, 481 | | :q!, 149 | tar, 19, 100, 363–367, 496 | xargs, 496 | | quit, 240, 481 | tcpdump, 197, 441 | уу, 149 | | quota, 508 | telinit, 312 | zcat, 100 | | r file, 145 | test, 449–450, 509 | zless, 100 | | :r filename, 149 | testparm, 378, 379 | zmore, 100 | | read, 454, 509 | /text/, 144 | commercial backup | | readonly, 454 | ?text?, 144 | utilities, 362–363 | | reboot, 100 | time, $19, 103-104$ | Common Unix Printing | | m recv, 240 | times, 454 | System (CUPS), 514 | | rename, 240 | top, $100, 496, 506$ | Common Vulnerabilities | | repeating previously | touch, 98 | and Exposures (CVE) | | typed, 97 | tr, 99, 105–106, 507 | (website), 432 | | return, 454 | trap, 454 | community, on Linux | | rm, 98, 120, 495, 506 | tty, 101 | Essentials Certification | | ${ m rmdir}, 98, 240, 506$ | type, 455 | Exam, 492–493 | | ${\tt rmmod}, 328, 503$ | u, 145, 149 | comp category, 220 | | run, 481 | U, 149 | compress command, 100 | | runlevel, 310, 311 | ulimit, 397, 455, 516 | CompTIA Linux+ exams | | rx, 148 | umask, $403-405$, 455 | about, 501–502 | | /sbin/ifconfig, 193 | umount, 101, 356–357 | administrative tasks, | | /sbin/route, 194 | unalias, $98,455$ | 511–512 | | sed, 19, 99, 457–463, 507 | uname, 62 , 100 | devices, Linux file
systems, file system | | send, 240 | uncompress, 100 | hierarchy standard, | | server, 250–251 | uniq, 99 | 507–508 | | ${\tt set}, 454, 509$ | unset, 455, 509 | essential system services, | | set variable,481 | update-rc.d, | 512–514 | | shell, 61–62, 92 | 252–253, 314 | GNU and Unix commands, | | shell, 481 | uptime, 319-320, 516 | 505–507 | Linux installation and package management, 503-505 networking, 514–515 security, 515-516 shells, scripting, and data management, 509-510 system architecture. 502-503 user interfaces and desktops, 510-511 Computer category (KickOff), 83 computer program, 465 computer security, 391–397 computer security audit about, 429-430 defined, 429 implementing methodology for about, 431-432 common vulnerabilities, 432-434 host-security review, 434-437 network security review, 438-439 nontechnical aspects of, 430 security testing tools, 440-442 technical aspects of, 431 vulnerability testing types, 440 concatenate, 118 conditional expressions, 463 confidentiality, 392 configuration files, 314–317 configuration lists, 276 configuring. See also installing: troubleshooting caching name server, 286-296 INN server, 269-275 Internet super server, 414 KDE bottom panel, 85–86 KDE desktop, 86–88 networks at boot time, 199-201 primary name server, 296-298 resolver, 285-286 Samba, 379–380 TCP wrapper security, 414-415 wireless access point, 184 wireless networking, 185-188 connecting LAN to Internet, 177-178 connectionless protocols, 243 connection-oriented protocols, 242-243 console, 89 context menus (KDE) desktop, 80–81 icons, 81-82 continue command, 453, 480 controls statement. 288 copying files, 495 Coreutils software package, 17 counting words/lines in text files, 104-105 cp command, 98, 119-120, 369–370, 506 cpio command, 17, 100 CPP variable, 475 CPPFLAGS variable, 475 CPU (central processing unit), 9 cpu field name, 321 %CPU heading, 319 cracker, 392 creating bootable flash drive, 35 key pair, 408–409 working configuration file, 39 cron daemon, 254, 333-336 crontab command. 333-336, 367, 512 CrossOver Office, 21 CSMA/CD (Carrier-Sense Multiple Access/ Collision detection), 172 ctlinnd, 270 Ctrl+D command, 149 Ctrl+L command, 149 Ctrl+U command, 149 **CUPS** (Common Unix Printing System), 514 curly braces ({}), 249, 264, 448-449 current directory, 114–115 cut command, 99, 496, 507 CVE (Common Vulnerabilities and Exposures) (website), 432 CVS (Subversion, **Concurrent Versions** System), 23, 433 CXX variable, 475 CXXFLAGS variable, 475 CyberCop Scanner, 441 d command, 143, 145 D command, 148, 268 -d option, 477 daemon, 270 data management, in CompTIA Linux+ Exam, 509-510 data protection, in security policy, 387 databases, vulnerability of. 434 datagrams, 243 date, working with, 103-104 date command, 101, 103–104 dd command, 44, 99, 148 | DDoS (Distributed Denial of | Desktop Pager icon (KDE), 85 | defined, 109 | |-----------------------------|-------------------------------|-------------------------------| | Service), 383, 393 | detection concept, in | navigating with | | Debian | security programs, 389, | commands, 114–115 | | about, 11 | 432, 434, 438 | in /proc, 324 – 325 | | BIND, 282 | /dev directory, 111, 326, 354 | protecting | | configuring networks, 199 | device drivers, 325 | about, 402 | | distributions, 38 | device files, 325, 326–327 | changing file | | init process, 310 | DEVICE parameter, 186 | ownerships, 402 | | installing | devices | changing file | | INN server, 268 | in CompTIA Linux+ Exam, | permissions, 403 | | Samba, 379 | 507–508 | checking for set user ID | | software in, 50–52 | Linux | permission, 405 | | software-development | about, 325–326 | setting default | | tools, 467 | device files, 326–327 | permission, 403–405 | | mounting CD-ROM, 357 | persistent device naming | viewing ownerships and | | runlevel command, 310 | with udev, 327–328 | permissions, 402 | | starting | mounting on file system, | standard in Linux file | | innd, 275 | 355–357 | system, 354 | | NFS server, 359, 376 | peripheral, 25–26 | top-level, 111–112 | | Samba, 380 | /dev/null file, 94 | directory path, 208 | | standalone servers | df command, 101, | dirs command, 453 | | in, 251 | 123–125, 508 | disclosure of information to | | stopping standalone | dG command, 148 | public, 386 | | servers in, 251 | DHCP (Dynamic Host | disconnect | | turning off standalone | Configuration | command, 239 | | servers, 413 | Protocol), 170, 245 | disk partition, 29 | | update-rc.d command, | dial-up, compared with DSL | disk-space usage, | | 252–253, 314 | and cable, 155 | commands for, 123–125 | | updates, 398 | diff command, 17, 99 | display command, 480 | | debug parameter, 330 | dig utility program, | DISPLAY environment | | declare command, 453 | 284–285 | variable, 349 | | decrypting | digiKam app, 133–134 | display=IP address:0 | | defined, 392 | digital camera apps, 133–134 | boot option, 44 | | documents, 411–412 | digital signatures, 393, | distributed database, 279 | | delay loop, 59 | 407–408 | Distributed Denial of | | delete command, 239 | Digital Subscriber Line. See | Service (DDoS), | | deleting characters from | DSL (Digital Subscriber | 383, 393 | | files, 105–106 | Line) | distributed | | Denial of Service (DoS), | dir command, 239 | responsibility, 280 | | 383, 386, 393 | directories | distribution list, 273 | | depmod command, 328 | about, 351–352 | distribution media, 25 | | derived work, 485 | changing, 495 | Distribution Specific icon, 4 | | DES, 345 | commands for listings and | distributions | | desktop, GNOME, 70-71 | permissions, 116–118 | about, 16 | | desktop context menus | commands for working | contents of, 16–24 | | (KDE), 80–81 | with, 120–121 | GNU software, 16–19 | | GUIs and applications,
19–21 | DoS (Denial of Service),
383, 386, 393 | E | |---|---|--| | Internet servers, 21–22
Linux, 10–14 | DOS file system, accessing, 368–371 | -e option, 477 | | networks, 21 | DOS floppy disks, | -E option, 471 | | online documentation, | mounting, 369–370 | echo command, 453 | | 22–23 | DOS/Windows disk | Eckstein, Robert (author) | | software development, 22 | partition, mounting, | <i>Using Samba</i> , 3rd | | distribution-specific | 368–369 | Edition, 380 | | version numbers, 15 | dot-dot (), 115, 494 | ed, 18, 141–145 | | DistroWatch (website), 11 | dotted-decimal | Edit menu (Firefox), 212 | | DIX standard, 173 | notation, 169 | 802.11a standard, 180 | | -DMACRO option, 470 | dotted-quad notation, 169 | 802.11b standard, 179–180 | | -DMACRO=DEFN option, 471 | downstream data, 161 | 802.11g standard, 180 electronic mail (e-mail), | | DMZ, 393 | driverdisk boot | 21–22 | | DNAME resource record | option, 44 | emacs software package, | | type, 291 | dselect command, 505 | 18, 467 | | dnl (delete through | DSL (Digital Subscriber | e-mail, 153 | | newline) macro,
260–261 | Line)
about, 154
 enable command, 453 | | DNS. See Domain Name | connecting with | enabling packet filtering, | | System (DNS) | about, 156 | 421–426 | | DOCSIS, 163 | ADSL, IDSL, SDSL, | encrypting | | documents, decrypting and | 157–158 | defined, 393 | | encrypting, 411–412 | how it works, 156–157 | documents, 411–412 | | dollar sign (\$), 289, 474 | modem, 156 | files with GnuPG, 406–412 | | domain name, 208 | setup, 158–161 | enforcing=0 boot | | domain name system (DNS) | DSL/cable modem NAT | option, 44 | | about, 171, 279–280 | router, 177 | Enter, 145 | | Berkeley Internet Name | dsniff, 441 | env command, 348, 509
environment variable, 348 | | Domain (BIND) | du command, 101, 123–125, | Epiphany, 209 | | about, 282 | 365, 508 | equal sign (=), 348 | | named daemon, 282–283 | dual-homed host, 393 | error messages, saving in | | resolver library, 283 | Dummies (website), 5 | files, 94 | | utility programs,
284–285 | dumps, 197
DVD drive, checking for | Esc, 149 | | configuring | installation, 31 | essential system services, | | caching name server, | DVDs | in CompTIA Linux+ | | 286–296 | burning, 135–136 | Exam, 512–514 | | primary name server, | installing from, 29–31 | ESSID parameter, 186 | | 296–298 | mounting, 25 | establishing security | | resolver, 285–286 | dw command, 148 | policies, 387–388 | | hierarchical domain | Dynamic Host | /etc directory, 111, 354 | | names, 281–282 | Configuration Protocol | /etc/apache2/httpd. | | domain parameter, 272 | (DHCP), 170 | conf file, 315 | | domains, on Linux+
Exams, 502 | dynamically linked, shared libraries, 23 | /etc/apt/sources.list file, 315 | | LAAIII3, JUL | 1151 at 1C3, 25 | • | | /etc/at.allow file, 315 | /etc, | |---|--------------| | /etc.bashrcfile, 315 | /etc, | | /etc/cron.allow file, 435 | 3^{2} | | /etc/cron.deny file, 435 | /etc/ | | /etc/crontab file, 435 | /etc, | | /etc/cups/cupsd.conf | /etc | | file, 315 | /etc/ | | /etc/exports file, | 19 | | 375–376 | /etc, | | /etc/fonts file, 315 | 3 | | /etc/fstab file, 315, | /etc, | | 357–358 | SI | | /etc/group file, 315 | /etc, | | /etc/grub.conf file, 315 | /etc, | | /etc/host.conf file, | /etc, | | 190, 191 | 40 | | /etc/hosts file, | /etc, | | 189–190, 315 | /etc, | | /etc/hosts.allow file, | fil | | 190, 192, 315, 435 | /etc, | | /etc/hosts.deny file, | /etc, | | 190, 192–193, 315, 435 | /etc, | | /etc/httpd/conf/ | S | | httpd.conf file, 315 | /etc, | | /etc/init.d file, 315 | S | | /etc/init.d/rcs file, 316 | /etc/ | | /etc/inittab file, | 31 | | 310–311, 315 | /etc, | | /etc/issue file, 316 | 31 | | /etc/lilo.conf file, 316 | /etc, | | /etc/login.defs file, 316 | fil | | /etc/logrotate.conf | /etc, | | file, 435 | /etc, | | /etc/mail directory, 267 | /etc, | | /etc/modprobe.conf file, | fil | | 95, 316, 329–330 | /etc, | | /etc/modules.conf | /etc, | | file, 316 | fil | | /etc/mtab file, 316 | /etc, | | /etc/named.conf file, | /etc,
fil | | 287–289 | /etc/ | | /etc/networks file, 190
/etc/nologin file, 427 | 7 et 0, | | /etc/norogin me, 427 /etc/nsswitch.conf file, | /etc/ | | 190 193 | /etc/ | | | | /pam.d $\,$ file, $\,435$ /passwd file, 316,43–344, 399–400, 435 /profile file, 316, 509 /profile.dfile,316 .rc.d file, 436 /resolv.conf file, 90, 191 /samba/smb.conf, 77, 379 /samba/ mbusers, 377 /securetty file, 436 /security file, 436 /shadow file, 316, 00-401, 427, 436 /shells file, 316 /shutdown.allow le, 436 /skel file, 316 / ssh file, 436/ssh/ sh config, 416 /ssh/ shd config, 416 /sysconfig file, 16, 436 /sysctl.conf file, 16, 436 /sysloq.conf le, 436 termcap file, 316 /udev file, 317 /udev/udev.conf le, 436 /vsftpd file, 436 /vsftpd.ftpusers le, 436 /X11 file, 317 /X11/xorg.conf le, 317 /xinetd.conf file, 17, 436 /xinetd.d file, 436 c/yum.conf file, 317 Ethereal, 441 Ethernet about, 157, 172 cables, 173–175 how it works, 172–173 Ethernet hub, 174 Ethernet LAN, setting up, 172–175 about, 172 cables, 173–175 how it works, 172–173 /etrc/hosts.allow file, 427 /etrc/hosts.deny file, 427 /etrc/inetd.conf file, 427 /etrc/init.d/* file, 427 /etrc/inittab file, 427 /etrc/passwd file, 427 /etrc/xinetd/conf file, 427 /etrc/xinetd.d/* file, 427 eval command, 453 Excel (Microsoft), 130-131 exchanging keys, 409–410 exclamation point (!), 97, 273 exec command, 453 exit command, 453 expand command, 99 expert boot option, 40, 45 expire, 270 exploit tools, 393 export command, 453, 509 exporting file systems with NFS, 360, 374-376 expr command, 450 expressions, 466 F operator, 265 -f option, 477 failsafe Knoppix boot command, 40 file allocation table File Transfer Protocol -fallow-singleprecision option, 471 (FAT), 36 (FTP) FAT (file allocation file command, 99, 480 about, 170, 231 table), 36 File menu (Firefox), 212 command-line client, Favorites category 236-240 file sharing (KickOff), 83 about, 26 graphical clients fb1280x1024 Knoppix with NFS about, 231–232 boot command, 40 about, 358-359, 373-374 FileZilla, 234–236 fc command, 453 exporting file systems, gFTP, 231, 232–233 FC variable, 475 360, 374–376 port numbers and, 245 file transfer utilities, 21–22 fdformat command, 101 mounting NFS file filenames fdisk command, 101 systems, 360–361, 376-377 about, 208 fdiv (floating point in Linux, 110 file systems division), 324 files. See also specific files about, 26, 109–114 FEATURE macro, 263 for checking disk-space backing up **Fedora** about, 361 usage, 123-125 about, 12 commercial backup managing BIND, 282 utilities, 362-363 about, 351-352, 361 chkconfig command, selecting backup accessing DOS or 251–252, 314 strategy and media, Windows file system, configuring 368-371 361-362 networks, 199 backing up, 361–367 tar command, 363-367 Samba, 379 /etc/fstab file. 357-358 batch, 106 distributions, 38 hierarchy, 352–355 changing /etc/fstab file, 358 mounting devices, permissions, 118–119, 403 init process, 310 355-357 user/group ownership installing of, 350, 402 sharing with NFS, Samba, 379 358-361 commands software in. 52–54 for filing, 121–122 for mounting and software-development for working with, unmounting, 122–123 tools, 467 119-120 navigating with Linux reading RSS feeds, 230 copying, 495 commands security level deleting characters from, about, 114 configuration tool, 422 for changing 105-106 starting encrypting with GnuPG, permissions and innd. 275 406-412 ownerships, 118–119 NFS server, 359, 376 getting command input for directory listings and Samba, 380 from, 93 permissions, 116–118 turning off standalone for directory navigation, getting command output servers, 414 114-115 from, 93-94 updates, 398 for finding files, 121–122 hiding, 494 Fedora Core (website), 12 listings, 495 for working with FFLAGS variable, 475 moving, 495 directories, 120–121 fg command, 100, 453 permissions, security for working with files, FHS (Filesystem Hierarchy 119-120 and, 435–437 Standard), 353 | files. See also specific files (continued) | flow-control statements, 466
FOCUS-LINUX mailing | gcc command, 18, 468–469, 469–470 | |--|---|-----------------------------------| | in /proc, 324-325 | list, 398 | gdb software package, 18, | | processing, 104–106 | fold command, 99 | 478–484 | | protecting, 402–405 | for loop, 450 | gdbm software package, 18 | | saving error messages | forgotten root password, | GECOS, /etc/passwd | | in, 94 | 307–308 | file, 343 | | signing with GnuPG, | FORWARD chain, 424–426 | General Public License | | 406–412 | . forward file, 267–268 | (GPL), 16 | | slitting into smaller | forward slash (/), 109, 111 | Gentoo Linux, 12 | | files, 106 | -fpcc-struct-return | get command, 239 | | substituting characters | option, 471 | gets function, 482 | | from, 105–106 | -fPIC option, 471 | gettext software | | Filesystem Hierarchy | FQDN (fully qualified domain | package, 18 | | Standard (FHS), 353 | name), 281–282 | getting started, 27–28 | | FileZilla, 234–236 | framework, security | gFTP, 231, 232–233 | | find command, 99, 121–122, | about, 384–385 | ghostscript software | | 396, 496, 507 | business requirements, | package, 18 | | finding bugs in gbd, | 385–386 | ghostview software | | 482–483 | managing, 389 | package, 18, 138 | | Findutils software | mitigation, 388–389 | GID | | package, 18 | policy, 387–388 | /etc/passwd file, 343 | | finger software | risk analysis, 386–387 | in group definitions, 344 | | package, 18 | free command, 100 | GIMP (GNU Image | | fingerprint, 401, 407 | Free Software Foundation | Manipulation Program) | | Firefox | (FSF), 16 | 18, 20, 136–137 | | changing home page, | -freg-struct-return | The GIMP User Manual | | 212–215 | option, 471 | (GUM), 137 | | user interface, 210–212 | fsck command, 101, 508 | globbing, 494 | | web surfing in, 215–216 | FSF (Free Software | GNOME | | Firewalk, 441 | Foundation), 16 | about, 11, 18, 20, 69–70 | | firewall | FTP. See File Transfer | Add or Remove Software | | about, 384 | Protocol (FTP) | Utility, 52–54 | | defined, 27, 393 | full packet awareness, 420 | bash shell , 60, 61 | | setting up | fully qualified domain name | desktop, 70–71 | | about, 418–421 | (FQDN), 281–282 | logging out of, 65 | | enabling packet filtering, | functions | onscreen keyboard | | 421–426 | defined, 467 | reader, 511 | | NAT, 421 | shell, 448–449 | panels, 71–74 | | fixing bugs in gbd, 483–484 | | text editor, 139–140 | | flash drive | \boldsymbol{G} | GNOME calculator, 132 | | creating bootable, 35 | | GNOME Ghostview, 138 | | installing on a, 34–35 | -g option, 471 | GNOME Strae (website), 229 | | floating-point division, 324 | Games subcategory | GNU C compiler, 23, | | flow, controlling in shell | (KickOff), 84 | 468–472 | | scripting, 449–451 | gawk software package, 18 | GNU C++ compiler $(g++)$, 23 | | | F | | | GNU C Library software package, 18 desktop, 70–71 ganels, 71–74 MATE, 76–77 Unity, 74–75 GNU compiler for Java, 23 GNU debugger (gdb), 23, 467, 478–484 GNU emacs editor, 23
GMU General Public License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU licenses, 14, 484–487 GNU licenses, 14, 484–487 GNU privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof.), 23 GNU Privacy Guard (GnuPG), 390, 406–412 GNU software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 GnupG, 390, 406–412 Google (website), 227 Google Groups 220, 227, 228 Gpg command, 390, 408–412 GOOgle (website), 227 Google Groups (website), 220, 227, 228 Gpg command, 390, 408–412 GOOgle (website), 220, 227, 228 Gpg command, 390, 408–412 GOOgle (website), 220, 227, 228 Gpg command, 390, 408–412 GOOgle (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 220, 227, 228 Gpg command, 390, 408–412 Google (website), 240, 240, 240, 240, 240, 240, | | | | |--|---------------------------------------|-----------------------|---------------------------------------| | desktop, 70-71 panels, 71-74 MATE, 76-77 Unity, 74-75 graphics and imaging applications about, 136 GNU compiler for Java, 23 GNU debugger (gdb), 23, 467, 478-484 GNU emacs editor, 23 GNU General Public License (GPL), 485-486 GNU Library General Public License (LGPL), 485, 486-487 GNU licenses, 14, 484-487 GNU make utility, 23, 467, 472-478 GNU Privacy Guard (GnuPG), 390, 406-412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU Losts software package, 18 GnuPG, 390, 406-412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16-19 GNUchess software package, 18 GnuPG, 390, 406-412 Google Groups (website), 227 220 GPL (General Public License), 485 GPL-30 GRUP roject, 16 GPL (GNU General Public License), 16 GPL (Gunt General Public License), 245 GPL (General Public License), 245 GPL (General Public License), 245 GPL (General Public License), 36 GPL (Google Groups (website), 26 GPL (Google Groups (website), 27 GPL (Google | GNU C Library software | GNOME | И | | CompTIA Linux+ Exam, 505–507 GNU compiler for Java, 23 GNU debugger (gdb), 23, 467, 478–484 GNU emacs editor, 23 GNU General Public License (GPL), 485, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU profiling utility (gprof), 23 GNU profict, 16 GNU Project, 16 GNU Library Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU Software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google Groups (website), 227 Google Groups (website), 227 Google Groups (website), 227 Gorgle Groups (website), 227 Gorgle Groups (website), 227 Gorgle Groups (website), 227 GPL (General Public License), 16 GPL (GNU General (SNU General Public License), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 MATE, 74–75 Unity, 74–75 graphics and imaging applications about, 136 GNMP, 18, 20, 136–137 GNOME Ghostview, 18, 138 GROME Ghostview, 18, 138 checking for installation, 31–33 defined, 9 wireless, 183–184 hash, 393, 407 hash command, 29, 454 hash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 heal of drive backing up, 33 checking for installation, 31–33 defined, 9 wireless, 183–184 hash, 393, 407 hash command, 239, 454 hash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 heal of drive backing up, 33 checking for installation, 31–33 defined, 9 wireless, 183–184 hash, 393, 407 hash command, 239, 454 hash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 heal of drive backing up, 33 checking for installation, 31–33 defined, 9 wireless, 183–184 hash, 393, 407 hash command, 209 head end, 162 heal of drive backing up, | | desktop, 70–71 | | | Comprize for Java, 23 GNU debugger (gdb), 23, 467, 478-484 GNU emacs editor, 23 GNU General Public License (GPL), 485-486 GNU Library General Public License, (GPL), 485-487 GNU licenses, 14, 484-487 GNU licenses, 14, 484-487 GNU make utility, 23, 467, 472-478 GNU Project, 16 GNU Project, 16 GNU Project, 16 GNU Software, 16-19 GNU compiler for Java, 23 GNU General Public License (GPL), 485, 486-487 GNU licenses, 14, 484-487 GNU make utility, 23, 467, 472-478 GNU Project, 16 GNU Project, 16 GNU software, 16-19 GNU compiler for Java, 23 GMP, 18, 20, 136-137 GNOME Ghostview, 18, 136 Graphics subcategory (KickOff), 84 gray box, 440 greater-than sign (>,), 93-94 grep tuility, 496, 507 groff software package, 18 GnuPG, 390, 406-412 GNU project, 16 GNU software, 16-19 GNU compiler for Java, 23 GMP, 18, 20, 136-137 GNOME Ghostview, 18, 136 Graphics subcategory (KickOff), 84 gray box, 440 greater-than sign (>,), 93-94 grep tuility, 496, 507 groff software package, 18 GnuPG, 390, 406-412 Groupame, in group definitions, 344 groups. See also users adout, 337 administration values, 345-347 changing of mark 100 installation, 31 hard link, 516 hardware checking for installation, 31-hard link ship, 39, 304 hash mark (#), 249, 380, | GNU commands, in | panels, 71–74 | h command 149 | | GNU compiler for Java, 23 GNU debugger (gdb), 23, 467, 478–484 GNU emacs editor, 23 GNU General Public License (GPL), 485–486 GNU Library General Public License (LGPL), 485, 486–487 GNU make utility, 23, 467, 472–478 GNU profiling utility (gprof), 23 GNU profiling utility (gprof), 23 GNU Project, 16 GNU Lorses software package, 18 Gnuneric Gnu | | | | | GNU debugger (gdb), 23, 467, 478–484 GNU emacs editor, 23 GNU General Public License (GPL), 485–486 GNU Library General Public License, 14, 484–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU project, 16 GNU profiling utility (gprof), 23 GNU Project, 16 GNU chess software package, 18 Gnumeric software package, 18 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPL (300 (GnuPG)), 390, 406–412 GOGgle (website), 227 Google Groups 220, 227, 228 graphical user interfaces (GUIs) (website), 220, | | | | | Adot, 478–484 GNU emacs editor, 23 GNU General Public License (GPL), 485–486 GNU Library General Public License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU profiling utility (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 Gnuneric | - | | _ | | GNU emacs editor, 23 GNU General Public License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 Gnup G, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 487–486 GPL3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GNUS eneral Public utility, 499, 512 groupand utility, 499, 512 groupand utility, 499, 512 groupand utility, 499, 512 groupane, in group definitions, 344 groups. See also users about, 337 administration values, 345–347 changing ownership of files, 350 GRUB rovice-configuration utility, 253–255 gui text editors, 139–14 graphical desktop, 11 graphical desktop, 11 graphical triefaces (GUIs) about, 19–21, 69–70 GROME Ghostview, 18, 138
GNOME Ghostview, (KickOff), 84 gray box, 440 greater-than sign (>), 93–94 grep tuility, 496, 507 group and utility, 499, 512 groupadd utility, 499, 512 groupadd utility, 499, 512 groupadd utility, 499, 512 groupad utility, 499, 512 groupad utility, 499, 512 groupane, in group definitions, 344 groups. See also users about, 337 administration values, 345–347 changing ownership of files, 350 managing, 344–345 grup trieve, 254 | | | | | GNU General Public License (GPL), 485–486 GNU Library General Public License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU licenses, 14, 484–487 GNU privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof.), 23 GNU Project, 16 GNU software, 16–19 GNU software, 16–19 GNU software package, 18 Gnuperic software package, 18 Gnuperic software package, 18 Gnuperic software package, 18 Gnuperic software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 287 gpg command, 390, 408–412 GPL (GROU General Public License), 16 GPL (GROU General Public License), 485–486 GPLU3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GNOME Ghostview, 18, 138 Graphics subcategory (KickOff), 84 gray box, 440 greater-than sign (>), 93–94 grep command, 18, 51, 62, 91, 92, 96, 99 grep utility, 496, 507 groff software package, 18 groupadd utility, 499, 512 groupmod utility, 499, 512 groupadd | | | | | GPL), 485–486 GNU Library General Public License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU Software, 16–19 GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPL (GNU General Public License), 485–486 GPL (GNU General Public License), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GNU Library General Public License, 486–487 GRUB boot loader, 57, 505 gtk+ software package, 18 Graphics subcategory (KickOff), 84 gray box, 440 greater-than sign (>), 93–94 grep command, 18, 51, 62, 91, 92, 96, 99 grep utility, 496, 507 groupadd utility, 499, 512 groupadd utility, 499, 512 groupadd utility, 499, 512 groupadd utility, 499, 512 groupad util | | | | | GNU Library General Public License (LGPL), 485, 486-487 GNU licenses, 14, 484-487 GNU make utility, 23, 467, 472-478 GNU Privacy Guard (GnuPG), 390, 406-412 GNU chess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406-412 Google (website), 227 Google Groups (website), 227 Google Groups (website), 227 GOOgle Groups (website), 227 GOPL (GNU General Public License), 16 GPL (GNU General Public License), 485-486 GPLy3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231-232 graphical user interfaces (GUIs) about, 19-21, 69-70 GNU Frivacy Guard (KickOff), 84 gray box, 440 gray box, 440 greater-than sign (>), 93-94 gree command, 18, 51, 62, 91, 92, 96, 99 gree p utility, 496, 507 groupad utility, 499, 512 utilit | | | | | License (LGPL), 485, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNUchess software package, 18 Gnuper | | | _ | | License Lightly, 463, 486–487 GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU chess software package, 18 Gnumeric software package, 18 Gnumeric software package, 18 GnupG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (GNU General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 grap box, 440 greater-than sign (>), 93–94 grep command, 18, 51, 62, 91, 92, 96, 99 wireless, 183–184 hash, 393, 407 hash command, 239, 454 hash mark (#), 249, 380, 449. See also opound sign (#) head end, 162 hello function, 448–449 help command, 239, 452, 454, 480 Help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 home directory, 111, 354 Home environment variable, 349 hide option, 375 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 home directory, 111, 354 Home environment variable, 349 | | | | | GNU licenses, 14, 484–487 GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNUchess software package, 18 GnuPG, 390, 406–412 Gougle (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 gpm service, 254 gpm service, 254 gpm service, 254 gpm service, 257 gpm service, 254 gpm service, 254 gpm service, 257 gpm service, 254 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GNU licenses, 14, 484–487 group command, 18, 51, 62, 91, 92, 96, 99 grep utility, 496, 507 groff software package, 18 groupad utility, 499, 512 | | | | | GNU make utility, 23, 467, 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 grep command, 18, 51, 62, 91, 92, 96, 99 grep utility, 496, 507 groff software package, 18 groupadd utility, 499, 512 groupadd utility, 499, 512 groupadd utility, 499, 512 groupade 49, 512 groupade utility, 499, 512 groupade utility, 499, 512 gro | | | checking for installation, | | 472–478 GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 grep utility, 496, 507 grep trility, 496, 507 groups fsoftware package, 18 groupadd utility, 499, 512 groupadd utility, 499, 512 groupadm utility, 499, 512 groupadel utility, 499, 512 groupadd groupame, in group definitions, 344 groups. See also users about, 337 administration values, files, 350 managing, 344–345 groupame, in group definitions, 344 hash, mark (#), 249, 380, 449. See also pound sign (#) head end, 162 help command, 239, 454 hash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 help command, 239, 454 hash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 help command, 239, 452, 454, 480 Help menu (Firefox), 212 hickes tisches, ash mark (#), 249, 380, 449. See also pound sign (#) head end, 162 help command, 239, 452, 454, 480 Help menu (Firefox), 211 hicked end, 162 hello function, 448-449 help command, 239, 452, 454, 480 Help menu (Firefox), 281 hicked end, 162 hello function, 448-49 hicked end, 162 hello function, 448-Melp neu (Firefox), 212 hicked end, 162 hello function, 449. See also pound sign (#) head end, 162 hello function, 449. See also pound sign (#) head end, 162 hello function, 449. See als | | | | | GNU Privacy Guard (GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 227 Google Groups (website), 227 Google Groups (website), 227 GOOgle Groups (website), 227 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLU3 (website), 487 gpm service, 254 se | | | defined, 9 | | GnuPG), 390, 406–412 GNU profiling utility (gprof), 23 GNU Project, 16 GNU software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 groupadd utility, 499, 512 groupadu utility, 499, 512 groupadd uti | | | wireless, 183–184 | | GNU profiling utility (gprof), 23 (groupadd utility, 499, 512 groupadd util | | | hash, 393, 407 | | GNU Project, 16 GNU Software, 16–19 GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11
graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 groupadd utility, 499, 512 groupad utility, 499, 512 groupad utility, 499, 512 groupadel utility, 499, 512 head end, 162 hello function, 448–449 help command, 239, 452, 454, 480 Help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 hide option, 48–449 help ommu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 | | _ | | | GNU Project, 16 GNU software, 16–19 GNU chess software package, 18 Gnumeric software package, 18 GnupG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 gpm service, 254 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GRUB desite), 497 groups. See also users abou us | | | | | GNU software, 16–19 GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 Groupname, in group definitions, 344 groups. See also users about users about, 337 administration values, 345–347 changing ownership of files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 499, 512 head end, 162 hello function, 448–449 help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 Help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 hide end, 162 help command, 239, 452, 454, 480 Help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 | (02 | | | | GNUchess software package, 18 Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups Changing ownership of files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | | | groups. See also users about, 337 administration values, 345, 454, 480 Help menu (Firefox), 212 hexadecimal digit, 184 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 gui text editors, 139–141 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 General public curved for the files of fi | · · · · · · · · · · · · · · · · · · · | | | | Gnumeric software package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 groups. See also users about, 337 administration values, 345–347 changing ownership of files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk + software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 Help menu (Firefox), 212 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349, | package, 18 | | | | package, 18 GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 377 administration values, 345, 480 Help menu (Firefox), 212 hexadecimal digit, 184 hidde option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 hexadecimal digit, 184 hidde option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 Help menu (Firefox), 212 hexadecimal digit, 184 hidde option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 | Gnumeric software | | | | GnuPG, 390, 406–412 Google (website), 227 Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 administration values, 345–347 changing ownership of files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 | package, 18 | | | | Google Groups (website), 220, 227, 228 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 Google Groups (website), 234 changing ownership of files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 gUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 hidden files, 494 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | | | changing ownership of files, 350 gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 files, 350 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 gui text editors, 139–141 gui text editors, 139–141 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 hide option, 375 hierarchical domain names, 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 Home environment variable, 349 | - ' | 345–347 | | | gpg command, 390, 408–412 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs)
about, 19–21, 69–70 Inles, 330 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 100 managing, 344–345 groups command, 100 graphical command, 100 about, 19–21, 69–70 managing, 344–345 groups command, 100 graphicaler, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) gunzip command, 100 qzip command, 100 variable, 349 | | changing ownership of | | | managing, 344–345 GPL (General Public License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 managing, 344–345 groups command, 100 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 281–282 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | files, 350 | | | License), 16 GPL (GNU General Public License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GRUB boot loader, 57, 505 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 hierarchy directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 Home | | | | | GRUB boot loader, 37, 305 gtk+ software package, 18 GUI service-configuration utility, 253–255 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GRUB boot loader, 37, 305 gtk+ software package, 18 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 directory, 111 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | | | License), 485–486 GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI user manager, 338–342 FileZilla, 234–236 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 file system, 352–355 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | | | GPLv3 (website), 487 gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUI service-configuration utility, 253–255 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI user manager, 338–342 FileZilla, 234–236 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 HINFO resource record type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | • | | | | gpm service, 254 graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 gui text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 type, 291 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | - | | graphical desktop, 11 graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 guil text editors, 139–141 GUI tools, 198, 303–305 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 hiscachesize parameter, 272 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | • | type, 291 | | graphical FTP clients about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUI user manager, 338–342 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 qzip command, 18, 100, 496 GUI user manager, history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | • | | | about, 231–232 FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 history command, 97, 454 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | parameter, 272 | | FileZilla, 234–236 gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 GUI utilities, 307 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 | | | | | gFTP, 231, 232–233 graphical user interfaces (GUIs) about, 19–21, 69–70 GUIs. See graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 History menu (Firefox), 212 /home directory, 111, 354 HOME environment variable, 349 | | | | | graphical user interfaces interfaces (GUIs) (GUIs) about, 19–21, 69–70 graphical user interfaces (GUIs) gunzip command, 100 gzip command, 18, 100, 496 variable, 349 variable, 349 | | | | | (GUIs) gunzip command, 100 HOME environment variable, 349 gzip command, 18, 100, 496 | | | · · · · · · · · · · · · · · · · · · · | | about, 19–21, 69–70 gzip command, 18, 100, 496 variable, 349 | | . , | | | | | = = | • | | | Cinnamon, 75–76 | J F | home page, 210, 212–215 | homedir, /etc/passwd icon context menus (KDE), info func command, 480 file, 344 81 - 82info local host icons, explained, 4 command, 480 checking connectivity id command, 101, 311 info prog command, 480 to, 195 ide=nodma boot option, 45 info var command, 480 defined, 394 IDSL (ISDN DSL), 157 information sharing, 154 security issues, 389, 390 ieee category, 220 infrastructure, wireless host address, 169 IETF (Internet Engineering Ethernet networks, host utility program, Task Force), 170, 280 180 - 181284-285 ifconfig command, 193, init command, 102, **HOSTNAME** environment 311-312, 503 498, 515 variable, 348, 349 init process, 308-310 image command, 239 host-security Initialization Vector (IV), 182 images about, 434-437 INN server accessing on USB digital recommended tools, 441 camera, 134 configuring and starting, hot plug, 26 269 - 275opening in GIMP, 137 hping2, 441 installing, 268–269 IMAP (Internet Message HTML anchor, 208 Access Protocol), 171 website, 269 HTTP (HyperText Transfer inn.conf file, 271-272 implementing Protocol), 171, 206, 245 security solutions, innd service, 22, 254, 270 httpd service, 388-389 innflags parameter, 272 22, 254, 438 security test methodology input and output HWADDR parameter, 186 about, 431–432 redirection (I/O hwclock command, 513 common vulnerabilities, redirection), 92–94 432-434 HyperText Markup INPUT chain, 424-426 Language (HTML), host-security review, insecure option, 375 206, 208 434-437 insecure locks HyperText Transfer network security review, option, 375 Protocol (HTTP), 438-439 insmod command, 328 Impress (LibreOffice.org), 171, 206, 245 installing 131-132 hyphen (-), 117, 470 about, 29, 50 incident handling, in checking PC hardware, security policy, 387 31 - 33incident response, 437 creating bootable flash incoming.conf file, 274 drive, 35 i command, 143, 145, 148 incremental backups. on a flash drive, 34–35 I command, 148 366-367 INN server, 268–269 -i option, 477 indent software Live CD, 34 -I option, 471, 477 package, 19 mail servers, 257–268 i386, 10 inetd server, 247-248, 413, Samba, 378–379 IA32 architecture 415, 438 software processors, 10 info break in Debian and Ubuntu, IBM, 10 command, 480 50 - 52IC (Integrity Check) info command, 98, 495 in Fedora, 52-54 field, 182 info files in SUSE, 54 ICMP (Internet Control command, 480 Message Protocol), 195 in Xandros, 55 | space needed for Linux, | |-------------------------------------| | 32–34 | | steps for, 29–31 | | troubleshooting | | about, 40 | | Knoppix boot | | commands, 40–43 | | Linux kernel boot | | options, 44–47 | | PC reboot problem, 44 | | signal 11 error, 43 troubleshooting | | workstation, 36 | | working with new | |
drive, 36 | | integrity, 394 | | Integrity Check (IC) | | field, 182 | | Intel 80x86 processor, 9, 10 | | in.telnetd, 22 | | InterBulletin (website), 227 | | Internet access, in security | | policy, 387 | | Internet Assigned Numbers | | Authority | | (website), 247 | | Internet connection | | about, 153–154 | | cable modem | | about, 161 | | how it works, 161–163 | | setup, 163–166 | | DSL | | about, 156 | | ADSL, IDSL, SDSL,
157–158 | | how it works, 156–157 | | setup, 158–161 | | ways to connect, 154–155 | | Internet Control Message | | Protocol (ICMP), 195 | | Internet Engineering Task | | Force (IETF), 170, 280 | | Internet Message Access | | Protocol (IMAP), 171 | | Internet servers, 21–22 | Internet services about, 170-171, 241-242 Internet Super Server, 247 - 250port numbers and, 245-247 securing, 413–415 in security policy, 387 standalone servers, 250 - 255TCP/IP and sockets, 242-245 Internet subcategory (KickOff), 84 Internet Super Server, 247-250, 414 InterNetNews components of, 270–274 startup, 274-275 internetworking, 169 intrusion detection, 441 io field name, 321 IP addresses, 169–170 IP routing table, 194 IP spoofing, 394 IPSec (IP Security Protocol), 394 iptables command, 164, 421-422, 424-426 IPv4, 497 IPv6, 170 IPV6INIT parameter, 186 isdn service, 254 Isof, 441 ISOLINUX boot loader, 57, 58 ISP, reading newsgroups from, 222-227 ISS Internet Scanner, 441 IV (Initialization Vector), 182 j command, 149 J command, 148 - i option, 477 jobs, scheduling about, 330-331 one-time, 331-333 recurring, 333-336 jobs command, 454 John the Ripper, 441 join command, 496, 507 #### K k command, 149 K Desktop Environment. See KDE (K Desktop Environment) K operator, 265 -k option, 477 k12 category, 220 Kbps, 154 KDE, 11, 60, 61 logging out of, 65 KDE (K Desktop Environment), 20 about, 79–80 configuring about, 86-88 KDE bottom panel, 85–86 desktop context menus, 80-81 icon context menus, 81-82 panel about, 82 icons, 85 Main Menu button, 82 - 85KDE Akregator (website), 229 KDE calculator, 132–133 key pair, generating, 408-409 KEY resource record type, 291 key ring, 409 keyboard, checking for installation, 31 keys, exchanging, 409–410 keyword, 50-51 knoppix myconf=/dev/ KickOff application, 83–85 hdal Knoppix boot kill command, 100, command, 41 454, 481 knoppix myconf=scan klogd daemon, 514 Knoppix boot command, 41 KNode, 223, 226-227 Knopper, Klaus knoppix noeject (developer), 12 Knoppix boot Knoppix command, 42 about, 12, 14 knoppix noprompt boot commands, 40–43 Knoppix boot distributions, 38 command, 42 root user, 306 knoppix nowheel Knoppix boot update-rc.d command, 252-253 command, 42 knoppix noxxx Knoppix knoppix 1 Knoppix boot boot command, 42 command, 41 knoppix pci=bios knoppix 2 Knoppix boot Knoppix boot command, 41 command, 42 knoppix acpi=off Knoppix boot knoppix pnpbios=off command, 41 Knoppix boot command, 42 knoppix atapicd Knoppic boot knoppix command, 41 screen=resolution Knoppix boot knoppix command, 42 desktop=wmname knoppix testcd Knoppix Knoppix boot boot command, 42 command, 41 knoppix dma Knoppix knoppix tohd=/dev/ boot command, 41 hdal Knoppix boot knoppix floppyconfig command, 42 Knoppix boot knoppix toram Knoppix command, 41 boot command, 42 knoppix fromhd=/dev/ knoppix vga=ext hdal Knoppix boot Knoppix boot command, 42 command, 41 knoppix hsync=80 knoppix vsync=60 Knoppix boot Knoppix boot command, 42 command, 41 knoppix lang=xx knoppix wheelmouse Knoppix boot Knoppix boot command, 41 command, 42 knoppix mem=256M knoppix xmodule= Knoppix boot modname Knoppix boot command, 41 command, 43 knoppix xserver=progname Knoppix boot command, 43 Konqueror, 209 Kontact app, 132 ks boot option, 45 ks=kickstartfile boot option, 45 ksyms command, 328 KWrite text editor, 140-141 1 command, 149 -1 option, 471, 477 -L option, 471 LAN. See local area network (LAN) LANANA (Linux Assigned Names And Numbers Authority), 326 last command, 499, 516 LC4, 441 1cd command, 239 ldconfig command, 504 1dd command, 100, 504 LDFLAGS variable, 475 least privilege, 345 Leave category (KickOff), 83 less command, 19, 99 less-than sign (<), 93–94 LGPL (GNU Library General Public License), 485, 486-487 /lib directory, 111, 354 libpng software package, 19 LibreOffice (website), 20, 21 LibreOffice Suite, 128–132 licenses, GNU, 484-487 LIDSSystems, 441 LILO boot loader, 57 links, 117, 206–208 Linspire, 12 Linux. See also specific linux category, 220 Ethernet topics Linux Essentials about, 172 about, 1, 9-10 Certification Exam cables, 173–175 boots about, 491-492 how it works, 172–173 automatically starting career. 492–493 TCP/IP servers, 313-314 command line, 493-496 about, 167-169 community, 492-493 /etc/inittab file, Internet services, 170 - 171310 - 311operating system, 496-498 IP, 170 init command, 311-312 IP addresses, 169–170 init process, 308-310 security and file permissions, 498-499 port numbers, 170–171 manually starting/ Linux IPv6 HOWTO, 170 local command, 454 stopping servers, 313 Linux kernel. See also local loop, 156 startup scripts, 312–313 operating system localhost.zone file. commands boot options, 44–47 294-295 about, 62–63, 98–101 defined, 9, 57 date, 103-104 locate command, 99, 122 versions, 14 managing processes, log analysis/monitoring vulnerability, 434 102-103 tools, 441 Linux Professional Institute navigating file system logcheck, 441 (LPI), 2 with, 114–121 logcolorise, 441 Linux Standard Base (LSB), processing files, 104-106 logger command, 498, 503 15–16, 353 root, 101-102 logic bombs, 394 time, 103-104 list command, 481 LOGNAME environment computer systems for, 10 listings variable, 349 directory, 116–118 configuration files, logout command, 454 files, 495 314-317 logrotate command, 498, Live CD, 34, 40 devices 503 Live version, 14 about, 325-326 LogWatch, 441 device files, 326-327 ln command, 98, LONE-TAR utility, 362 499, 516 persistent device naming loop length, 158 loadable driver modules, with udev. 327-328 loops per jiffy (LPJ), 59 managing distributions, 10–14, 16–24 /lost+found about, 328 getting started, 27–28 directory, 111 installation and package /etc/modprobe.conf lowres boot option, 45 file, 329–330 management, in LPI (Linux Professional loading/unloading CompTIA Linux+ Exam, Institute), 2 modules, 328-329 503-505 LPJ (loops per jiffy), 59 loadable kernel installing, 29–36 lpg command, 514 modules, 328 managing PC with, 24-27 lpr command, 99, 514 space needed for, 32-34 loading modules, 328–329 1prm command, 514 starting, 57–60 local area network (LAN) 1s command, 98, 116-118, about, 26, 167 versions, 14-15 119, 239, 350, 402, configuring TCP/IP web browsing in, 209-216 495, 507 networking, 175–177 Linux Assigned Names And LSB (Linux Standard Base), connecting to Internet, **Numbers Authority** 15 - 16177-178 (LANANA), 326 1 smod command, 328, 329, 503 1 sof tool, 397 LXO-101 Exam icon, 4 LXO-102 Exam icon, 4 #### M M operator, 265 -m option, 478 m4 software package, 19, 260-261 macro processor, 260 macros, 260, 474–475 mail command, 258 MAIL environment variable, 349 mail exchanger, 293 mail servers, 257–268 mail transport agent (MTA), 257 mail user agent (MUA), 257 mail-delivery mechanism, 259 mail-delivery test, 258 MAILER macro, 263 mailg command, 513 Main Menu button (KDE), 82 - 85make command, 19, 476-478, 481 make config command, 503 makefile about, 473–474 names, 472–473 sample, 475–476 man command, 98, 495 managing CD-ROMs, 49-50 CDs, 49–50 command input/output, 92 - 94file systems about, 351–352, 361 accessing DOS or Windows file system, 368 - 371backing up, 361–367 /etc/fstab file, 357-358 hierarchy, 352–355 mounting devices, 355–357 sharing with NFS, 358-361 flash drives, 49-50 flow in shell scripting, 449-451 groups, 344-345 loadable driver modules about, 328 /etc/modprobe.conf file, 329-330 loading/unloading modules, 328-329 networks. See network management PC with Linux, 24-27 processes, 102–103 security, 389 user accounts using commands, 342-343 using GUI user manager, 338-342 Mandrakelinux, 12 Mandriva Linux One, 12 manually starting/stopping servers, 313 MASQUERADE AS macro, 263 MASQUERADE DOMAIN macro, 264 masquerading, 423 MATE, 69–70, 76–77 Mbps, 154 -mcpu=cputype option, 471 MD5 encryption, 345, 401 mdelete command, 239 mdir command, 239 media, selecting, 361-362 /media directory, 112, 354 /media/cdrom directory, 96 mediacheck boot option, 45 %MEM heading, 319 Membership, in group definitions, 344 memory field name, 320 mem=xxxM boot option, 45 menus, Firefox, 212 MEPIS Linux, 13, 14 message digest, 393, 401 Metcalfe, Robert (inventor), 173 mget command, 239 Microsoft Excel, 130–131 Microsoft PowerPoint. 131-132 Microsoft Word, 129 misc category, 220 misc.test newsgroup, 226 mitigation approach, 388-389 mkdir command, 98, 120–121, 239 mkfs command, 101 mknod command, 101 mkswap command, 101 mls command, 239 /mnt directory, 112, 354 Mockapetris, Paul (computer scientist), 280 MODE parameter, 186 modinfo command, 328, 503 modprobe command, 328, 329, 330, 503 monitor, checking for installation, 32 monitoring system performance about, 317 checking disk performance/disk usage, 321-322 top utility, 318-319 uptime command. 319-320 vmstat utility, 320-321 system security, 412-413 monolithic program, 328 more command, 63, 99 mount command, 101, 356, 357, 358, 368–369, 508 mount point, 123, 356, 360, 376 mounting CDs/DVDs, 25, 122-123, 355-357 DOS floppy disks, 369–370 DOS/Windows disk partition, 368–369 NFS file systems, 360–361, 376-377 NTFS partition, 370-371 mouse, checking for installation, 32 moving files, 495. See also mv command mput command, 239 MTA (mail transport agent), 257 mta parameter, 271 MUA (mail user agent), 257 multioption. 191 multihomed, 191 multimedia, defined, 127 multimedia applications about, 133 burning CDs/DVDs, 135-136 digital camera, 133-134 playing audio CDs, 134–135 playing sound files, 135 Multimedia subcategory (KickOff), 84 multivolume archive, backing up and restoring, 365 my command, 98, 495, 506 MX resource record type, 291, 292
N -n command, 144 n command, 145 ^n command, 145 +n command, 144 -n option, 478 NAME environment variable, 348 NAME parameter, 187 name servers, 280, 283 named daemon, 254, 282-283, 296 namespace, 281 NAT (Network Address Translation), 159–161, 165-166, 421 National Vulnerability Database (NVD) (website), 432 Nautilus File Manager, 135 navigating file system about, 114 for changing permissions and ownerships, 118-119 for directory listings and permissions, 116–118 for directory navigation, 114-115 for finding files, 121–122 for working with directories, 120-121 for working with files, 119-120 ncurses software package, 19 **Nessus Security** Scanner, 441 NETBIOS, 171 Netcat, 441 netfilter, 421-422 netstat command, 195. 397, 498, 515 network address, 169, 242 Network Address Translation (NAT), 159–161, 165–166, 421 Network Basic Input/ Output System, 378 network card, checking for installation, 32 Network Configuration tool, 185 Network connection icon (KDE), 85 network devices, 327 Network File System (NFS), 26, 373, 434 **Network Information** Service (NIS), 434 Network layer, of TCP/IP, 168 network management about, 189 configuring networks at boot time, 199-201 TCP/IP configuration files about, 189 /etc/host.conf file. 190, 191 /etc/hosts file, 189-190 /etc/hosts.allowfile, 190, 192, 315, 435 /etc/hosts.deny file, 190, 192–193, 315, 435 /etc/networks file, 190 /etc/nsswitch.conf file, 190, 193 /etc/resolv.conf file, 190, 191 TCP/IP networks about, 193 connectivity to host, 195 GUI tools, 198 IP routing table, 194 network interfaces, 193-194 network status. 195–197 sniffing network packets, 197-198 **Network News Transfer** Protocol (NNTP), 171, 246 network packets, sniffing, 197–198 network security issues, 389, 390–391 network service, 254 networking, in CompTIA Linux+ Exam, 514–515 NETWORKING variable, 199 networks about, 21, 26-27 checking status, 195–197 information systems, 193 interfaces, 193–194 recommended utilities, 441 security review, 438-439 newaliases command, 513 newgrp command, 499, 512 news, security and, 397-398 news category, 220 news servers, 268-269 news services, 21–22 newsfeeds file, 272-274 newsgroups about, 153, 217-218 adding, 276–277 hierarchy of, 218–219, 275-276 Linux-related, 221–222 posting news, 225-226 reading and searching at websites, 227-228 reading from ISP, 222–227 reading with Thunderbird, 223 - 225setting up, 275–277 subscriptions to, 225 testing, 277 top-level categories of, 219–220 NewsMonster (website), 229 newsreader, 222-223 Newzbot (website), 222 next command, 481 NFR. 441 NFS (Network File System) about, 26, 171, 373, 434 file sharing with about, 373-374 exporting file systems, 374–376 mounting NFS file systems, 376-377 port numbers and, 246 sharing files with about, 358–359 exporting file systems, 360 mounting NFS file systems, 360–361 nfs service, 254 nfslock service, 255 NFSv4 implementation (website), 374 ngrep, 441 NI heading, 319 nice command, 100 NIS (Network Information Service), 434 nl command, 99 nloq, 441nmap tool, 397, 441-442 nmbd, 378 nmblookup, 378 nmi watchdog=1 boot option, 45 nnrpd, 270 NNTP (Network News Transfer Protocol), 171, 246 nntpsend, 270 no all squash option, 375 noapic boot option, 45 nofirewire boot option, 45 no hide option, 375 noht boot option, 45 nomce boot option, 45 nomount boot option, 46 nonrepudiation, 394 nopass boot option, 46 nopcmcia boot option, 46 noprobe boot option, 46 no root squash option, 376 noshell boot option, 46 no subtree check option, 375 Notifications and Jobs icon (KDE), 85 nousb boot option, 46 nousbstorage boot option, 46 Novell certifications, 518 no wdelay option, 375 NS resource record type, 291, 292, 295 NTFS partition, mounting, 370-371 ntop, 441 NTP, port numbers and, 246 ntpd, 513 NVD (National Vulnerability Database) (website), 432 #### 0 operator, 265 -o option, 471, 478 -0 option, 471 -01...03 options, 471 object files, 469 office applications, 128–132 Office subcategory (KickOff), 84 ONBOOT parameter, 187, 200 10Base2, 173 10Base5, 173 10BaseT, 173 127.0.0.1, reverse mapping, 295 one-time job scheduling, 331-333 online documentation, 22 - 24open command, 240 **Open Secure Shell** (OpenSSH) software, 415-417 Open Secure Sockets Layer (Open SSL), 433 Open Source Initiative (website), 11 open source projects, 11 Open Windows icon (KDE), 85 opening terminal windows and virtual consoles. 89-90 operating system defined, 9 on Linux Essentials Certification Exam, 496-498 updates to, 434 /opt directory, 112, 354 options statement, 288 Oracle certifications, 518 order option, 191 organization parameter, 271 -Os option, 471 OSTYPE macro, 263 OUTPUT chain, 424-426 ovmethod parameter, 271 ownerships changing, 118–119, 350, 402 viewing, 402 p command, 149 P command, 149, 265 -p option, 478 pack command, 496 packet filter firewall, 419 packet filtering defined, 394 enabling, 421–426 packet sniffers. recommended, 441 packets, 173, 394 PAMs (pluggable authentication modules), 401 Pan, 223 Panel toolbox (KDE), 85 panels defined, 80 GNOME, 71-74 **KDE** about, 82 icons, 85 Main Menu button, 82 - 85PARC (Xerox Palo Alto Research Center), 173 Partial POSIX Extended Regular Expressions, 495-496 partition, 30 passwd command, 101, 397, 516 password, /etc/passwd file, 343 Password, in group definitions, 344 password security, 437 password-checking tools, recommended, 441 paste command, 99, 496, 507 patch command, 19, 99 PATH environment variable, 348, 349, 447–448 pathhost parameter, 271 pathname, 110–111 pathnews parameter, 272 patterns, newsgroup, 273 PC checking hardware for installation, 31–33 managing with Linux, 24-27 reboot problem, 44 pci=biosirg boot option, 46 pci=noacpi boot option, 46 pcmcia service, 255 -pedantic option, 471 PEERDNS parameter, 187 penetration test, 439 Pentium processor, 9, 10 performing risk analysis, 386-387 perimeter network, 394 period (.), 111, 119–120, 144, 494 peripheral, defined, 24 peripheral devices, 25–26 Perl, 23 permissions changing, 118–119, 403 checking for set user ID. 405 directory, 116-118 security and file, 498-499 setting default, 403–405 viewing, 402 persistent device naming with udev, 327-328 -pg option, 471 physical console, 89 Physical layer, of TCP/IP, 168 PID heading, 319 ping command, 195, 441, 498, 515 pipe (1), 92, 105, 496 pkgname, 50 PKI (Public Key Infrastructure), 395 playing audio CDs, 134-135 sound files, 135 pluggable authentication modules (PAMs), 401 plug-ins, 137 Point-to-Point Protocol (PPP), 327 POP3 (Post Office Protocol version 3), 171 popd command, 454 port numbers, 170–171, 242, 245–247, 439 port scanners defined, 394 recommended, 441 tool, 413 portmap service, 255 ports, 208 post access, 274 Post Office Protocol version 3 (POP3), 171 posting to newsgroups, 225 - 226pound sign (#), 189, 208, 264, 271, 438. See also hash mark (#) PowerPoint (Microsoft), 131-132 PPP (Point-to-Point Protocol), 327 PPP over Ethernet (PPPoE), 161 PPPoE (PPP over Ethernet), 161 PR heading, 319 prevention concept, in security programs, 434, 438 primary name server, configuring, 296–298 print command, 481 printenv command, 100, 347 printers about, 25 checking for installation, 32 setting up, 47–49 /proc directory, 112 /proc file system, 322–325 process field, 311 process file system, 323 process ID (PID), 102-103, 309 processes, managing, 102-103 processing files, 104–106 processors, 9, 10, 32 procs field name, 320 programming about, 465-467 software-development tools about, 467 C++ compiler, 468-472 GNU C compiler, 468-472 GNU debugger, 478-484 GNU make utility. 472-478 implications of GNU licenses, 484–487 prompt command, 240 protection concept, in security programs, 389, 431 protocols about, 207-208 connectionless, 243 connection-oriented. 242-243 defined, 168 proxy server, 395 ps command, 63, 100, 496, 506 pstree command, 100 PTR resource record type, 291, 292 public key cryptography, 395 public key encryption, 406-407 Public Key Infrastructure (PKI), 395 pushd command, 454 put command, 240 pwd command, 98, 115, 240, 454, 506 Python, 23 #### 0 q command, 144, 145 :q command, 149 :q! command, 149 Q command, 145 -q option, 478 QTParted tool, 30 question marks (?), 95–96, 208, 494 quit command, 240, 481 quota command, 508 quotation marks, 91 #### R r file command, 145 :r filename command, 149 R operator, 265 -r option, 478 -R option, 478 RAM (random-access memory), 24, 32 random-access memory (RAM), 24, 32 RATE parameter, 187 RC4 encryption algorithm, 182 RCS (Revision Control System), 23 rcs software package, 19 reaction concept, in security programs, 389 read access, 274 read command, 454, 509 readers.conf file, 274 reading. See newsgroups; RSS feeds read input function, 482 readonly command, 454 real-time clock, 513 reboot command, 100 reboot=b boot option, 46 rec category, 220 Recently Used category (KickOff), 83 reconfiguring BIOS, 36 recurring job scheduling, 333-336 recv command, 240 Red Hat certifications, 518 Red Hat Linux 9, 12 Red Hat Package Manager (RPM), 12, 52 regular expressions, 494 Remember icon, 4 remote access, 154 remote login, 21–22 rename command, 240 Rendezvous Directory Service, 171 repeating previously typed commands, 97 RES heading, 319 rescue boot option, 46 resolution=HHHxVVV boot option, 46 resolver, configuring, 285-286 resolver library, 280, 283 resource records (RR), 289-293 resources, Samba, 380 response concept, in security programs, 389, 432, 434, 438 responsibilities, in security policy, 387 Retina Network Security Scanner, 441 return command, 454 reverse mapping, zone file for, 295 Revision Control System (RCS), 23 rewinding tape device, 366 Rhythbox, 135 risk analysis, 386-387 rm command, 98, 120, 495, 506 RM variable, 475 rmdir command, 98, 240, 506 rmmod command, 328, 503 rndc utility, 288 ro option, 375 root, becoming about, 101-102, 305 forgotten root password, 307 - 308for GUI utilities, 307 su - command, 306 root access, 64 /root directory, 111, 112, 354 root domain, 281 root password, 55 root username, 58-59 root
zone file, 293-294 root squash option, 375 route utility, 498, 515 RP resource record type, 291 RPM (Red Hat Package Manager), 12, 52 RR (resource records), 289-293 RSS feeds about, 217-218, 228-229 reading, 229-230 rsysload file, 413 run command, 481 runlevel command. 310, 311 running qbd, 479–481 make, 476-478 rw option, 375 rwx group, 117-118 rx command, 148 #### S S heading, 319 S operator, 265 -s option, 478 SAINT, 441 Samba about, 26, 373 configuring, 379–380 installing, 378–379 resources, 380 setting up Windows server using, 377–380 trying, 380 samba service, 255 SANS Institute, 432 SARA, 441 saving error messages in files, 94 /sbin directory, 112, 354 /sbin/hdparm program, 321 /sbin/hotplug program, 327 /sbin/ifconfig command, 193 /sbin/route command, 194 /sbin/udev program, 327 sbpcd file, 92 scanlogd, 441 scheduling jobs about, 330-331 one-time, 331-333 recurring, 333-336 sci category, 220 screening router, 395 screenshot, 51 script directories, for cron jobs, 336 scripting, 445 scripts, writing, 106–108 SCSI controller, checking for installation, 32 SDSL (Symmetric DSL), 157 searching newsgroups at configuring TCP configuration file, 259–264 websites, 227-228 wrapper, 414–415 files, 266-267 secure option, 375 standalone services, macro, 261-264 Secure Shell, 391 413-414 mail transport agent, 259 Secure Shell (SSH), 171, 246 service, 255, 438, 513 monitoring for system, Secure Sockets Layer 412-413 using, 257-258 news, 397-398 vulnerability, 433 (SSL), 267 passwords security sendmail/cf file, 264-265 about, 399-400, 437 about, 383, 399 serial boot option, 46 pluggable authentication in CompTIA Linux+ Exam, server command, 250-251 modules (PAMs), 401 515–516 server process, 171, 246 shadow, 400–401 defined, 25 servers, automatically securing the Linux encrypting and signing starting, 313–314 files with GnuPG system, 389-391 services, Internet. See setting up firewalls digital signatures, Internet services about, 418-421 407-408 set command, 454, 509 enabling packet filtering, GPG, 408–412 set variable 421-426 public key encryption, command, 481 406-407 NAT, 421 setting default permission, files and directories terminology and tools, 403-405 391-397 about, 402 setuid program, 395, 437 testing tools, 440–442 changing file setup ownership, 402 updates, 397-398 Ethernet LAN, 172-175 changing file using Secure Shell (SSH) local newsgroups, 275–277 permissions, 403 for remote logins, printers, 47-49 checking for set user ID 415-417 Windows server with permission, 405 security audits, in security Samba, 377-380 policy, 387. See also setting default SGID permission, 499 permission, 403-405 computer security SHA-512, 345 viewing ownerships and audit shadow passwords, permissions, 402 security level configuration 400-401 files to be aware of, tool, 422-424 -shared option, 472 426-427 security policy, 384, sharing files. See file framework for 387-388 sharing about, 384-385 sed command, 19, 99, Sharutils software business requirements, 457–463, 507 package, 19 Segment Violation Signal 385-386 shell managing, 389 (SIGSEGV), 43 about, 17, 60, 89 mitigation, 388–389 selecting backup strategies bash policy, 387-388 and media, 361-362 about, 90 risk analysis, 386-387 selinux=0 boot option, 46 asterisks, 95-96 importance of, 383-384 semicolon (;), 380, 451, 496 automatic command Internet services send command, 240 completion, 95 about, 413 sendmail combining configuring Internet about, 22 commands, 92 super server, 414 alias file, 268 command syntax, 90-92 Shuttleworth, Mark SOA resource record type. controlling command 291, 295 (developer), 74 input and output, 92–94 SIG resource record soc category, 220 question marks, 95–96 type, 291 sockets repeating previously signal 11 error, 43, 115 client/server model and, typed commands, 97 SIGSEGV (Segment 243-244 commands, 61-62 TCP/IP and, 242-245 Violation Signal), 43 Linux commands simple file, 107 software about, 62-63, 98-101 Simple Mail Transfer defined, 9 date, 103–104 Protocol (SMTP), GNU, 16-19 managing processes, 171, 246 installing 102 - 103Simple Network about, 50 processing files, 104–106 in Debian and Ubuntu, Management Protocol root, 101-102 50 - 52(SNMP), 171, 246, 433 time, 103–104 single dot (.), 115 in Fedora, 52–54 opening terminal windows single-volume archive. in SUSE, 54 in Xandros, 55 and virtual consoles, backing up and 89-90 software development, 22 restoring, 363–365 software-development tools starting bash shell, 60-61 size command, 240 about, 467 writing scripts, 106–108 skipddc boot option, 46 shell, /etc/passwd C++ compiler, 468–472 Slackware Linux, 13 GNU C compiler, 468–472 file, 344 slash (/), 116, 143, 147, GNU debugger, 478-484 shell command, 481 352-353 GNU make utility, 472–478 SHELL environment Slashdot (website), 230 implications of GNU variable, 349 smbadduser, 378 licenses, 484–487 shell functions, 448-449 smbcacls.378 shell scripting s/old/new/ smbclient, 378 about, 445-447 command, 145 smbcontrol, 378 advanced sort command, 99, 105 smbd. 378 about, 463 sorting text files, 105 smbmount, 378 awk, 459-463 sound card smbpasswd, 378 about, 26 sed, 457-463 smbprint, 378 checking for basics of smbstatus, 378 installation, 32 about, 447 smbtar, 378 sound files, playing, 135 bash built-in commands. smbumount. 378 source code, 11 451-455 SMTP (Simple Mail Transfer spamassassin service, 255 controlling flow, 449-451 Protocol), 171, 246 split command, 99, 106 shell functions, 448–449 sniffer, defined, 395 splitting files into smaller storing, 447–448 sniffing network packets, files, 106 shell scripts, 61, 445, 197-198 509-510 spoofing, 418 sniffit, 441 shift command, 454 spyware, 395 SNMP (Simple Network square brackets ([]), 95–96 SHR heading, 319 Management Protocol), /srv directory, 112, 354 shutdown command, 171, 246, 433 SRV resource record 100, 503 snmpd service, 255 type, 291 shutting down, 64-65 Snort, 441 ssh, 391stream-based macro, 260 NFS server, 359, 376 SSH (Secure Shell), 171, 246 /string command, 149 Samba, 380 ssh service. 255 standalone servers in, 251 ?string command, 149 sshd, 22stopping standalone Strobe, 441 SSL (Secure Sockets su command, 101, 102, 306, servers in, 251 Laver), 267 397, 499, 516 turning off standalone servers, 414 stable releases, 15 subscriptions, to updates, 398 standalone servers newsgroups, 225 swap field name, 321 about, 250 substituting characters starting and stopping from files, 105–106 swapoff command, 101 manually, 250-251 subtree check swapon command, 101 starting automatically, swapping, 321 option, 375 251 - 255Swatch, 441 Subversion, Concurrent turning off, 413-414 Versions System (CVS), symbolic links, 117, 252, 516 standalone services, 23, 433 Symmetric DSL security of, 438-439 (SDSL), 157 subversion, standard error, 92–94 vulnerability, 433 symmetric key standard input, 92-94 encryption, 395 sudo tool, 397, 499, 516 standard output, 92–94 Synaptic Package suid permission, 405 standards, wireless Manager, 51 superuser, 101–102, 516 Ethernet, 179–180 SUSE sync command, 101, 375 starting about, 13 /sys directory, 112 bash shell, 60-61 BIND, 282 sysfs program, 327 caching name server, certifications from, 518 syslog service, 255 295-296 chkconfig command, sysload file, 413 INN server, 269-275 251-252, 314 system administration Linux, 57-60 configuring about, 25 STARTTLS extension, 267 networks, 200 becoming root startup, InterNetNews, Samba, 379 about, 305 274-275 wireless network in, 187 forgotten root startup scripts, 312–313 directory option, 288 password, 307–308 stateful inspection firewall, distributions, 38 for GUI utilities, 307 419-420 /etc/fstab file, 357-358 su command, 306 statements, 466 init process, 310 GUI tools, 303–305 statistical attacks, 182 installing Linux boots status bar, Firefox, 211 INN server, 268 automatically starting status command, 240 software in, 54 servers, 313-314 stderr, 92-94, 496 software-development /etc/inittab file, stdin, 92-94, 496 tools, 467 310-311 stdout, 92-94 reading RSS feeds, 230 init command. 311-312 step command, 481 recovering from forgotten init process, 308–310 sticky keys, 511 root password, 308 manually starting/ storing, in shell scripting, security level configuration stopping servers, 313 447-448 tool, 422, 423 startup scripts, 312–313 stream cipher, 182 starting Linux configuration files, stream editor, 458 innd, 275 314-317 configuring networking, Linux devices T about, 325-326 175-177 device files, 326–327 four-layer network model, T operator, 265 persistent device 168-169 -t option, 478 Internet services, naming with udev, tabbed browsing, 210 327-328 170 - 171tac command. 99 managing loadable IP, 170 tail command. 99 driver modules IP addresses, 169–170 talk category, 220 about, 328 networks tapes, backing up on, 366 /etc/modprobe.conf about, 193 tar command, 19, 100, checking connectivity to file. 329–330 363-367, 496 host, 195 loading/unloading tasks checking IP routing modules, 328-329 by category in YaST table, 194 monitoring system Control Center, 305 checking network performance, system administration, 318-321 interfaces, 193-194 301-302 checking network status, scheduling jobs TCP wrapper 195-197 about, 330-331 access control files, 391 sniffing network packets, one-time, 331-333 security, configuring, 197-198 recurring, 333–336 414-415 using GUI tools, 198 tasks, 301-302 tcpdstats, 441 port numbers, 170–171 viewing system tcpdump command, sockets and, 242-245 information with / 197, 441 Technical Stuff icon, 4 proc file system, TCP/IP (Transmission telinit command. 312 322 - 325Control Protocol/ system architecture, in telnet.515 Internet Protocol) CompTIA Linux+ Exam, TELNET, 171, 246 about, 21, 167–169 502-503 Temporal Key Integrity configuration files system field name, 321 Protocol (TKIP), 181 about, 189 system information, TERM environment variable. /etc/host.conf file, viewing with /proc file 348, 349 190, 191 terminal, 89 system, 322–325 /etc/hosts file, terminal windows, opening, system performance, 189-190
89-90 monitoring /etc/hosts.allow about, 317 test command. file, 190, 192 checking disk 449–450, 509 /etc/hosts.deny file, performance/disk testing 190, 192–193 usage, 321-322 caching name server, /etc/networks file, 295-296 top utility, 318-319 190 newsgroups, 277 uptime command, /etc/nsswitch.conf vulnerabilities, 440 319-320 file, 190, 193 testing releases, 15 vmstat utility, 320-321 /etc/resolv.conf testparm command, System subcategory file, 190, 191 378, 379 (KickOff), 84 Top Cyber Security Risks texinfo software package, 19 /text/ command, 144 ?text? command, 144 text editors about, 139, 467 with ed, 141-145 GUI, 139-141 with vi, 141, 145-149 text files counting words/lines in, 104-105 sorting, 105 text input mode, 142, 146 text mode installation, 38 text terminal, 16 TFTP (Trivial File Transfer Protocol), 171, 246 thick Ethernet, 173 thicknet, thickwire, 173 thinwire, 173 32-bit cyclic redundancy code (CRC-32), 182 threats defined, 395 typical, 386 Thunderbird, 222, 223-225 tilde (~) character, 115, 146 time, working with, 103-104 time command, 19, 103-104 TIME+ heading, 319 Time icon (KDE), 85 Time To Live (TTL), 289 times command, 454 Tip icon, 4 TKIP (Temporal Key Integrity Protocol), 181 /tmp directory, 112, 354 **Tool Command Language** and graphical toolkit (Tc1/T1), 23toolbars, Firefox, 211 tools, GUI, 198, 303-305 Tools menu (Firefox), 212 top command, 100, 496, 506 index (website), 432 top panel (GNOME), 72 top utility, 318–319 top-level directories, 111-112 Torvalds, Linus (Linux developer), 1, 10 touch command, 98 tr command, 99, 105-106, 507 traceroute, 515 Transmission Control Protocol/Internet Protocol. See TCP/IP (Transmission Control Protocol/Internet Protocol) Transport layer, of TCP/IP, 168 trap command, 454 Tripwire, 390, 412, 441 Trivial File Transfer Protocol (TFTP), 171, 246 Trojan horse, 396 troubleshooting about, 37 CD-ROMs, 49-50 DVDs, 49-50 flash drives, 49-50 installation about, 40 Knoppix boot commands, 40-43 Linux kernel boot options, 44-47 PC reboot, 44 signal 11 error, 43 printer setup, 47–49 text mode installation, 38 workstation, 36 X, 38–40 Ts, Jay (author) Using Samba, 3rd Edition, 380 TTL (Time To Live), 289 tty command, 101 turning off standalone servers, 413–414 24-bit IV, 182 TXT resource record type, 291 type command, 455 TYPE parameter, 187 #### U u command, 145, 149 U command, 149 Ubuntu BIND, 282 configuring networks, 199 distributions, 38 init process, 310 installing INN server, 268 Samba, 379 software in, 50-52 starting innd, 275 Samba, 380 standalone servers in, 251 stopping standalone servers in, 251 turning off standalone servers, 413 update-rc.d command, 252-253, 314 updates, 398 Ubuntu Linux, 13 udev, persistent device naming with, 327–328 UDP (User Datagram Protocol), 243 UID, /etc/passwd file, 343 ulimit command, 397, 455, 516 -UMACRO option, 472 umask command, 403–405, 455 umount command, 101, 356-357 unalias command, 98, 455 uname command, 62, 100 unauthorized access, 386 uncompress command. 100 **Uniform Resource Locators** (URLs), 206-208 uniq command, 99 **United States Computer Emergency Readiness** Team (website), 397 Unity, 69–70, 74–75 Unix commands, in CompTIA Linux+ Exam. 505-507 Unix-to-Unix Copy Protocol (UUCP), 218 unloading modules, 328-329 unmounting, 122–123, 369-370 unset command, 455, 509 unshielded twisted-pair cable (UTP), 173 unstable releases, 15 update-rc.d command. 252–253, 314 updates, security, 397–398 updating configuration lists, 276 operating systems, 434 upstream data, 161 uptime command, 319–320, 516 URLs (Uniform Resource Locators), 206–208 USB interface, 26 **US-CERT National Cyber** Alert System mailing list, 398 Usenet, 218 Usenet Replayer (website), 227 user command. 240 User Datagram Protocol (UDP), 243 user file-creation mask, 403 USER heading, 319 user interfaces and desktops, in CompTIA Linux+ Exam, 510-511 useradd command, 499, 512 USERCTL parameter, 187 userdel command, 499 usermod tool, 397, 516 username, /etc/passwd file, 343 users. See also groups about, 337 adding user accounts about, 337-338 using commands, 342-343 using GUI user manager, 338-342 administration values. 345-347 changing ownership of files, 350 environment, 347–349 /etc/passwd file, 343-344 Using Samba, 3rd Edition (Ts, Eckstein & Collier-Brown), 380 /usr directory, 112, 113, 354 /usr/bin/scp, 416 /usr/bin/slogin, 416 /usr/bin/ssh.416 /usr/bin/ssh-keygen, 416 /usr/sbin/sshd, 416 utilities, commercial backup, 362–363. See also specific utilities Utilities subcategory (KickOff), 84 utility programs, 284–285 UTP (unshielded twistedpair cable), 173 UUCP (Unix-to-Unix Copy Protocol), 218 #### U V operator, 265 -v option, 472, 478 /var directory, 112, 113-114, 354 variables about, 474–475 defined, 466 /var/log dmesg file, 317 /var/log file, 412, 436 /var/log/apache2 file, 317 /var/log/boot.msg file, 317 /var/log/cron file, 317 var/log/httpd file, 317 /var/log/lastlog file, 436 /var/log/messages file, 317, 436, 503 /var/log/wtmp file, 436 vendor-neutral certifications, 517 vendor-specific certifications, 518 version-control system, 467 VERSIONID macro, 263 versions, 14-15, 228 Vetescan, 441 vi text editor, 141, 145–149, 467 video card, checking for installation, 32 View menu (Firefox), 212 viewing online help in vi, 147 ownerships and permissions, 402 system information with /proc file system, 322-325 VIRT heading, 319 virtual consoles, opening, 89-90 virus, 396 visual command mode, 146 vmstat utility, 320–321 vnc boot option, 46 Volume icon (KDE), 85 vsftpd service, 22, 255 vulnerabilities common, 432–434 defined, 396 testing, 440 typical, 387 vulnerability scanners, 439, 441 #### W w command, 149, 499 w file command, 145 W file command, 145 :w filename command, 149 -w option, 472, 478 -W option, 478 -W1 option, 472 wait command, 455 WAP (wireless access point), 184 war-dialing, 396 war-driving, 396 Warning! icon, 4 watch command, 481 wc command, 100, 104-105, 496, 507 wdelay option, 375 Web, 153 web browsing about, 205–206 links, 206-208 in Linux, 209–216 URLs, 206–208 web servers, 209 web servers, 209 web surfing, in Firefox, 215-216 websites. See also specific websites distance limits, 154 downstream transfer speed, 163 reading newsgroups at, 227-228 searching newsgroups at, 227-228 signal 11 error, 43 WEP (Wired Equivalent Privacy), 181-182 whatis command, 98, 495 where command, 481 whereis command, 99 which command, 99 Whisker, 441 white box, 440 who command, 499, 516 Wi-Fi (Wireless Fidelity), 179 Wi-Fi Alliance (website), 180 Wi-Fi Protected Access (WPA), 181 Wi-Fi Protected Access 2 (WPA2), 181 wildcards, 95-96, 494 wildmat pattern, 273 WIMP (windows, icons, mouse, and pointer), 60 winbind service, 255 winbindd, 378 windows, icons, mouse, and pointer (WIMP), 60 Windows file system, accessing, 368-371 Windows partition, reducing size of, 33-34 Windows server, setting up using Samba, 377-380 Wired Equivalent Privacy (WEP), 181–182 wireless access point (WAP), 184 wireless Ethernet networks about, 179-180 ad hoc modes, 180-181 infrastructure, 180-181 Wired Equivalent Privacy (WEP), 181-182 wireless local area network (WLAN), 179 wireless networks configuring about, 185-188 wireless access point, 184 setting up wireless hardware, 183-184 wireless Ethernet networks about, 179-180 ad hoc modes, 180-181 infrastructure, 180-181 Wired Equivalent Privacy (WEP), 181-182 Wireshark (website), 198 WLAN (wireless local area network), 179 Word (Microsoft), 129 working configuration file, 39 workstation, troubleshooting, 36 World Wide Web, 21–22 worm, 396 WPA (Wi-Fi Protected Access), 181 :wg command, 149 Writer (LibreOffice.org), 129 writing shell scripts, 106-108 #### X X, troubleshooting, 38–40 x command, 148, 481 X Window System, 11, 19–20 **Xandros** about, 12 BIND, 282 configuring networks, 199 distributions, 38 init process, 310 installing INN server, 268 software in, 55 software-development tools, 467 starting innd, 275 NFS server, 359 Samba, 380 turning off standalone servers, 413 update-rc.d command, 252–253, 314 updates, 398 Xandros Desktop OS, 13 Xandros File Manager, 135 xargs command, 496 xdpyinfo utility, 510 Xerox Palo Alto Research Center (PARC), 173 XFree86 Project, 20 xfs service, 255 xinetd server, 248-250, 255, 413, 415, 438 XMMS, 135 xwininfo utility, 510 YaST Control Center, 187, 259, 282, 303–305 Yellowdog Update, Modified (yum), 505 ypbind service, 255 yy command, 149 zcat command, 100 zless command, 100 zmore command, 100 zone statement, 288, 293-294 zone transfer, 283 ### About the Author **Emmett Dulaney** is the author of several books on operating systems and certifications, and an associate professor at Anderson University. Other books he has written include *CompTIA A+ Complete Study Guide* (Sybex) and the CompTIA *Security + Study Guide* (Sybex). Emmett is a columnist for *Certification Magazine* and *Campus Technology*. He is also contributor to a number of other magazines. ### Dedication For Karen, Kristin, Evan, and Spencer. ## Author's Acknowledgments I would like to thank Naba Barkakati, who wrote the first two editions and did a fantastic job of condensing a wealth of information into a small tome. I would also like to thank Elizabeth Zinkann for being one of the best technical editors in the business, and Pat O'Brien for keeping everything on track and on time. #### **Publisher's Acknowledgments** Senior Acquisitions Editor: Kyle Looper Project Editor: Pat O'Brien Copy Editor: Barry Childs-Helton Technical Editor: Elizabeth Zinkann Editorial Assistant: Annie Sullivan Sr. Editorial Assistant: Cherie Case **Project Coordinator:** Patrick Redmond **Cover Image:** ©iStock.com/Coldimages #### **Apple & Mac** iPad For Dummies, 6th Edition 978-1-118-72306-7 iPhone For Dummies, 7th Edition 978-1-118-69083-3 Macs All-in-One For Dummies, 4th Edition 978-1-118-82210-4 OS X Mavericks For Dummies 978-1-118-69188-5 #### **Blogging & Social Media** Facebook For Dummies, 5th Edition 978-1-118-63312-0 Social Media Engagement For
Dummies 978-1-118-53019-1 WordPress For Dummies, 6th Edition 978-1-118-79161-5 #### **Business** Stock Investing For Dummies, 4th Edition 978-1-118-37678-2 Investing For Dummies, 6th Edition 978-0-470-90545-6 Personal Finance For Dummies, 7th Edition 978-1-118-11785-9 QuickBooks 2014 For Dummies 978-1-118-72005-9 Small Business Marketing Kit For Dummies, 3rd Edition 978-1-118-31183-7 #### **Careers** Job Interviews For Dummies, 4th Edition 978-1-118-11290-8 Job Searching with Social Media For Dummies, 2nd Edition 978-1-118-67856-5 Personal Branding For Dummies 978-1-118-11792-7 Resumes For Dummies, 6th Edition 978-0-470-87361-8 Starting an Etsy Business For Dummies, 2nd Edition 978-1-118-59024-9 #### **Diet & Nutrition** Belly Fat Diet For Dummies 978-1-118-34585-6 Mediterranean Diet For Dummies 978-1-118-71525-3 Nutrition For Dummies, 5th Edition 978-0-470-93231-5 #### **Digital Photography** Digital SLR Photography All-in-One For Dummies, 2nd Edition 978-1-118-59082-9 Digital SLR Video & Filmmaking For Dummies 978-1-118-36598-4 Photoshop Elements 12 For Dummies 978-1-118-72714-0 #### Gardening Herb Gardening For Dummies, 2nd Edition 978-0-470-61778-6 Gardening with Free-Range Chickens For Dummies 978-1-118-54754-0 #### Health Boosting Your Immunity For Dummies 978-1-118-40200-9 Diabetes For Dummies, 4th Edition 978-1-118-29447-5 Living Paleo For Dummies 978-1-118-29405-5 #### **Big Data** Big Data For Dummies 978-1-118-50422-2 Data Visualization For Dummies 978-1-118-50289-1 Hadoop For Dummies 978-1-118-60755-8 #### <u>Language &</u> <u>Foreign Language</u> 500 Spanish Verbs For Dummies 978-1-118-02382-2 English Grammar For Dummies, 2nd Edition 978-0-470-54664-2 French All-in-One For Dummies 978-1-118-22815-9 German Essentials For Dummies 978-1-118-18422-6 Italian For Dummies, 2nd Edition 978-1-118-00465-4 **2** Available in print and e-book formats. #### **Math & Science** Algebra I For Dummies, 2nd Edition 978-0-470-55964-2 Anatomy and Physiology For Dummies, 2nd Edition 978-0-470-92326-9 Astronomy For Dummies, 3rd Edition 978-1-118-37697-3 Biology For Dummies, 2nd Edition 978-0-470-59875-7 Chemistry For Dummies, 2nd Edition 978-1-118-00730-3 1001 Algebra II Practice Problems For Dummies 978-1-118-44662-1 #### **Microsoft Office** Excel 2013 For Dummies 978-1-118-51012-4 Office 2013 All-in-One For Dummies 978-1-118-51636-2 PowerPoint 2013 For Dummies 978-1-118-50253-2 Word 2013 For Dummies 978-1-118-49123-2 #### Music Blues Harmonica For Dummies 978-1-118-25269-7 Guitar For Dummies, 3rd Edition 978-1-118-11554-1 iPod & iTunes For Dummies, 10th Edition 978-1-118-50864-0 #### **Programming** Beginning Programming with C For Dummies 978-1-118-73763-7 Excel VBA Programming For Dummies, 3rd Edition 978-1-118-49037-2 Java For Dummies, 6th Edition 978-1-118-40780-6 #### **Religion & Inspiration** The Bible For Dummies 978-0-7645-5296-0 Buddhism For Dummies, 2nd Edition 978-1-118-02379-2 Catholicism For Dummies, 2nd Edition 978-1-118-07778-8 ## Self-Help & Relationships Beating Sugar Addiction For Dummies 978-1-118-54645-1 Meditation For Dummies, 3rd Edition 978-1-118-29144-3 #### **Seniors** Laptops For Seniors For Dummies, 3rd Edition 978-1-118-71105-7 Computers For Seniors For Dummies, 3rd Edition 978-1-118-11553-4 iPad For Seniors For Dummies, 6th Edition 978-1-118-72826-0 Social Security For Dummies 978-1-118-20573-0 #### **Smartphones & Tablets** Android Phones For Dummies, 2nd Edition 978-1-118-72030-1 Nexus Tablets For Dummies 978-1-118-77243-0 Samsung Galaxy S 4 For Dummies 978-1-118-64222-1 Samsung Galaxy Tabs For Dummies 978-1-118-77294-2 #### **Test Prep** ACT For Dummies, 5th Edition 978-1-118-01259-8 ASVAB For Dummies, 3rd Edition 978-0-470-63760-9 GRE For Dummies, 7th Edition 978-0-470-88921-3 Officer Candidate Tests For Dummies 978-0-470-59876-4 Physician's Assistant Exam For Dummies 978-1-118-11556-5 Series 7 Exam For Dummies 978-0-470-09932-2 #### Windows 8 Windows 8.1 All-in-One For Dummies 978-1-118-82087-2 Windows 8.1 For Dummies 978-1-118-82121-3 Windows 8.1 For Dummies, Book + DVD Bundle 978-1-118-82107-7 ### **2** Available in print and e-book formats. # Take Dummies with you everywhere you go! Whether you are excited about e-books, want more from the web, must have your mobile apps, or are swept up in social media, Dummies makes everything easier. linkd.in/1gurkMm # Leverage the Power For Dummies is the global leader in the reference category and one of the most trusted and highly regarded brands in the world. No longer just focused on books, customers now have access to the For Dummies content they need in the format they want. Let us help you develop a solution that will fit your brand and help you connect with your customers. #### **Advertising & Sponsorships** Connect with an engaged audience on a powerful multimedia site, and position your message alongside expert how-to content. Targeted ads • Video • Email marketing • Microsites • Sweepstakes sponsorship # of For Dummies #### **Custom Publishing** Reach a global audience in any language by creating a solution that will differentiate you from competitors, amplify your message, and encourage customers to make a buying decision. Apps • Books • eBooks • Video • Audio • Webinars #### **Brand Licensing & Content** Leverage the strength of the world's most popular reference brand to reach new audiences and channels of distribution. For more information, visit www.Dummies.com/biz # Dummies products make life easier! - · DIY - Consumer Electronics - · Crafts - Software - Cookware - Hobbies - Videos - Music - Games - · and More! For more information, go to **Dummies.com** and search the store by category. # At home, at work, or on the go, Dummies is here to help you go digital! From eLearning to e-books, test prep to test banks, language learning to video training, mobile apps, and more, Dummies makes learning easier.